Cart
Free US shipping over $10
Proud to be B-Corp

Introductory Real Analysis Frank R. Dangello

Introductory Real Analysis By Frank R. Dangello

Introductory Real Analysis by Frank R. Dangello


$8.86
Condition - Well Read
Only 1 left

Faster Shipping

Get this product faster from our US warehouse

Introductory Real Analysis Summary

Introductory Real Analysis by Frank R. Dangello

This text for courses in real analysis or advanced calculus is designed specifically to present advanced calculus topics within a framework that will help students more effectively write and analyze proofs. The authors' comprehensive yet accessible presentation for one- or two-term courses offers a balanced depth of topic coverage and mathematical rigor.

Introductory Real Analysis Reviews

1. Proofs, Sets, and Functions Proofs Sets Functions Mathematical Induction 2. The Structure of R Algebraic and Other Properties of R The Completeness Axiom The Rational Numbers Are Dense in R Cardinality 3. Sequences Convergence Limit Theorems Subsequences Monotone Sequences Bolzano-Weierstrass Theorems Cauchy Sequences Limits at Infinity Limit Superior and Limit Inferior 4. Continuity Continuous Functions Continuity and Sequences Limits of Functions Consequences of Continuity Uniform Continuity Discontinuities and Monotone Functions 5. Differentiation The Derivative Mean Value Theorems Taylor's Theorem L'Hopital's Rule 6. Riemann Integration Existence of the Riemann Integral Riemann Sums Properties of the Riemann Integral Families of Riemann Integrable Functions Fundamental Theorem of Calculus Improper Integrals 7. Infinite Series Convergence and Divergence Absolute and Conditional Convergence Regrouping and Rearranging Series Multiplication of Series 8. Sequences and Series of Functions Function Sequences Preservation Theorems Series of Functions Weierstrass Approximation Theorem 9. Power Series Convergence Taylor Series 10. The Riemann-Stieltjes Theorem Monotone Increasing Integrators Families of Intergrable Functions Riemann-Stieltjes Sums Functions of Bounded Variation Integrators of Bounded Variations 11. The Topology of R Open and Closed Sets Neighborhoods and Accumulation Points Compact Sets Connected Sets Continuous Functions Bibliography. Hints and Answers. Index

Table of Contents

1. Proofs, Sets, and Functions Proofs Sets Functions Mathematical Induction 2. The Structure of R Algebraic and Other Properties of R The Completeness Axiom The Rational Numbers Are Dense in R Cardinality 3. Sequences Convergence Limit Theorems Subsequences Monotone Sequences Bolzano-Weierstrass Theorems Cauchy Sequences Limits at Infinity Limit Superior and Limit Inferior 4. Continuity Continuous Functions Continuity and Sequences Limits of Functions Consequences of Continuity Uniform Continuity Discontinuities and Monotone Functions 5. Differentiation The Derivative Mean Value Theorems Taylor's Theorem L'Hopital's Rule 6. Riemann Integration Existence of the Riemann Integral Riemann Sums Properties of the Riemann Integral Families of Riemann Integrable Functions Fundamental Theorem of Calculus Improper Integrals 7. Infinite Series Convergence and Divergence Absolute and Conditional Convergence Regrouping and Rearranging Series Multiplication of Series 8. Sequences and Series of Functions Function Sequences Preservation Theorems Series of Functions Weierstrass Approximation Theorem 9. Power Series Convergence Taylor Series 10. The Riemann-Stieltjes Theorem Monotone Increasing Integrators Families of Intergrable Functions Riemann-Stieltjes Sums Functions of Bounded Variation Integrators of Bounded Variations 11. The Topology of R Open and Closed Sets Neighborhoods and Accumulation Points Compact Sets Connected Sets Continuous Functions Bibliography. Hints and Answers. Index

Additional information

CIN0395959330A
9780395959336
0395959330
Introductory Real Analysis by Frank R. Dangello
Used - Well Read
Hardback
Cengage Learning, Inc
1999-08-18
304
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a used book. We do our best to provide good quality books for you to read, but there is no escaping the fact that it has been owned and read by someone else previously. Therefore it will show signs of wear and may be an ex library book

Customer Reviews - Introductory Real Analysis