Quantile Regression by Lingxin Hao

Skip to product information
1 of 1

Quantile Regression by Lingxin Hao

Regular price $46.00
Condition - New
40+ In stock
Regular price $46.00
Condition - New
40+ In stock

Free shipping in 5-10 business days on orders over $15

Summary

Quantile Regression establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literatures exist for each subject matter, the authors explore the natural connections between this increasingly sought-after tool and research topics in the social sciences.

The feel-good place to buy books
  • Free shipping in the US over $15
  • Supporting authors with AuthorSHARE
  • 100% recyclable packaging
  • Proud to be a B Corp – A Business for good
  • Sell-back with World of Books - Sell your Books

Quantile Regression by Lingxin Hao

Quantile Regression, the first book of Hao and Naiman′s two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao and Naiman show, in their application of quantile regression to empirical research, how this model yields a more complete understanding of inequality. Inequality is a perennial concern in the social sciences, and recently there has been much research in health inequality as well. Major software packages have also gradually implemented quantile regression. Quantile Regression will be of interest not only to the traditional social science market but other markets such as the health and public health related disciplines. Key Features: Establishes a natural link between quantile regression and inequality studies in the social sciences Contains clearly defined terms, simplified empirical equations, illustrative graphs, empirical tables and graphs from examples Includes computational codes using statistical software popular among social scientists Oriented to empirical research
Lingxin Hao is a professor of sociology at Johns Hopkins University. Her specialties include quantitative methodology, social inequality, sociology of education, migration, and family and public policy. She is the lead author of two QASS monographs Quantile Regression and Assessing Inequality. Her research has appeared in the Sociological Methodology, Sociological Methods and Research, American Journal of Sociology, Demography, Social Forces, Sociology of Education, and Child Development, among others. Daniel Q. Naiman (PhD, Mathematics, 1982, University of Illinois at Urbana-Champaign) is Professor and Chair of the Applied Mathematics and Statistics at the Johns Hopkins University. He was elected as a Fellow of the Institute of Mathematical Statistics in 1997, and was an Erskine Fellow at the University of Canterbury in 2005. Much of his mathematical research has been focused on geometric and computational methods for multiple testing. He has collaborated on papers applying statistics in a variety of areas: bioinformatics, econometrics, environmental health, genetics, hydrology, and microbiology. His articles have appeared in various journals including Annals of Statistics, Bioinformatics, Biometrika, Human Heredity, Journal of Multivariate Analysis, Journal of the American Statistical Association, and Science.
SKU NIN9781412926287
ISBN 13 9781412926287
ISBN 10 1412926289
Title Quantile Regression
Author Lingxin Hao
Series Quantitative Applications In The Social Sciences
Condition New
Binding Type Paperback
Publisher SAGE Publications Inc
Year published 2007-06-13
Number of pages 136
Cover note Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
Note This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time