Cart
Free Shipping in the UK
Proud to be B-Corp

General, Organic and Biological Chemistry H. Stephen Stoker

General, Organic and Biological Chemistry By H. Stephen Stoker

General, Organic and Biological Chemistry by H. Stephen Stoker


£3.90
New RRP £56.99
Condition - Well Read
Only 1 left

Summary

Mixed courses that use General, Organic and Biological Chemistry (GOB) books typically have populations with non-science majors as well as nursing/allied health. This GOB course is a one or two-semester survey of general, organic and biological chemistry. It is intended primarily for majors in nursing and other allied health occupations.

General, Organic and Biological Chemistry Summary

General, Organic and Biological Chemistry: Student Text by H. Stephen Stoker

Comprehensive problem-solving support, engaging visuals, and a focus on the applications of chemistry combine to make this text an ideal match for allied health majors. Throughout the book, the author minimizes complicated mathematics. Early chapters focus on fundamental chemical principles while later chapters build on the foundation of these principles, developing the concepts and applications central to organic and biological chemistry. The Fourth Edition further develops the strengths of the previous editions with a refreshed, contemporary art program, additional challenging problems, and expanded Chemistry-at-a-Glance and Chemical Connections features. A complete technology package accompanies the text and features the new CL Testing program powered by Diploma, the new HM ClassPresent CD with videos and animations, and a new Eduspace online homework course.

Table of Contents

1. Basic Concepts About Matter 1.1 Chemistry: The Study of Matter 1.2 Physical States of Matter 1.3 Properties of Matter 1.4 Changes in Matter Chemistry at a Glance: Use of the Terms Physical and Chemical 1.5 Pure Substances and Mixtures 1.6 Elements and Compounds Chemistry at a Glance: Classes of Matter 1.7 Discovery and Abundance of the Elements 1.8 Names and Chemical Symbols of Elements 1.9 Atoms and Molecules 1.10 Chemicals and Formulas Chemical Connections: Good Versus Bad Properties for a Chemical Substance; Elemental Composition of the Human Body 2. Measurements in Chemistry 2.1 Measurement Systems 2.2 Metric System Units 2.3 Exact and Inexact Numbers 2.4 Uncertainty in Measurement and Significant Figures Chemistry at a Glance: Significant Figures 2.5 Significant Figures and Mathematical Operations 2.6 Scientific Notation 2.7 Conversion Factors and Dimensional Analysis Chemistry at a Glance: Conversion Factors 2.8 Density 2.9 Temperature Scales and Heat Energy Chemical Connections: Body Density and Percent Body Fat; Normal Human Body Temperature 3. Atomic Structure and the Periodic Table 3.1 Internal Structure of an Atom 3.2 Atomic Number and Mass Number 3.3 Isotopes and Atomic Masses Chemistry at a Glance: Atomic Structure 3.4 The Periodic Law and the Periodic Table 3.5 Metals and Nonmetals 3.6 Electron Arrangements Within Atoms Chemistry at a Glance: Shell-Subshell-Orbital Interrelationships 3.7 Electron Configurations and Orbital Diagrams 3.8 The Electronic Basis for the Periodic Law and the Periodic Table 3.9 Classification of the Elements Chemistry at a Glance: Element Classification Schemes and the Periodic Table Chemical Connections: Protium, Deuterium, and Tritium: The Three Isotopes of Hydrogen; Importance of Metallic and Nonmetallic Trace Elements for Human Health; Electrons in Excited States 4. Chemical Bonding: The Ionic Bond Model 4.1 Chemical Bonds 4.2 Valence Electrons and Lewis Symbols 4.3 The Octet Rule 4.4 The Ionic Bond Model 4.5 The Sign and Magnitude of Ionic Change 4.6 Ionic Compound Formation 4.7 Chemical Formulas for Ionic Compounds 4.8 The Structure of Ionic Compounds 4.9 Recognizing and Naming Binary Ionic Compounds Chemistry at a Glance: Ionic Bonds and Ionic Compounds 4.10 Polyatomic Ions 4.11 Chemical Formulas and Names for Ionic Compounds Containing Polyatomic Ions Chemistry at a Glance: Nomenclature of Ionic Compounds Chemical Connections: Fresh Water, Seawater, Hard Water, and Soft Water: A Matter of Ions; Tooth Enamel: A Combination of Monoatomoc and Polyatomic Ions 5. Chemical Bonding: The Covalent Bond Model 5.1 The Covalent Bond Model 5.2 Lewis Structures for Molecular Compounds 5.3 Single, Double, and Triple Covalent Bonds 5.4 Valence Electrons and Number of Covalent Bonds Formed 5.5 Coordinate Covalent Bonds 5.6 Systematic Procedures for Drawing Lewis Structures 5.7 Bonding in Compounds with Polyatomic Ions Present 5.8 Molecular Geometry Chemistry at a Glance: The Geometry of Molecules 5.9 Electronegativity 5.10 Bond Polarity 5.11 Molecular Polarity Chemistry at a Glance: Covalent Bonds and Molecular Compounds 5.12 Naming Binary Molecular Compounds Chemical Connections: Nitric Oxide: A Molecule Whose Bonding Does Not Follow The Rules; Molecular Geometry and Odor 6. Chemical Calculations: Formula Masses, Moles, and Chemical Equations 6.1 Formula Masses 6.2 The Mole: A Counting Unit for Chemists 6.3 The Mass of a Mole 6.4 Chemical Formulas and the Mole Concept 6.5 The Mole and Chemical Calculations 6.6 Writing and Balancing Chemical Equations 6.7 Chemical Equations and the Mole Concept Chemistry at a Glance: Relationships Involving the Mole Concept 6.8 Chemical Calculations Using Chemical Equations Chemical Connections: Chemical Reactions on an Industrial Scale: Sulfuric Acid 7. Gases, Liquids, and Solids 7.1 The Kinetic Molecular Theory of Matter 7.2 Kinetic Molecular Theory and Physical States 7.3 Gas Law Variables 7.4 Boyle's Law: A Pressure-Volume Relationship 7.5 Charles's Law: A Temperature-Volume Relationship 7.6 The Combined Gas Law 7.7 The Ideal Gas Law 7.8 Dalton's Law of Partial Pressures Chemistry at a Glance: The Gas Laws 7.9 Changes of State 7.10 Evaporation of Liquids 7.11 Vapor Pressure of Liquids 7.12 Boiling and Boiling Point 7.13 Intermolecular Forces in Liquids Chemistry at a Glance: Intermolecular Forces Chemical Connections: The Importance of Gas Densities; Blood Pressure and the Sodium Ion/Potassium Ion Ratio; Hydrogen Bonding and the Density of Water 8. Solutions 8.1 Characteristics of Solutions 8.2 Solubility 8.3 Solution Formation 8.4 Solubility Rules 8.5 Solution Concentration Units 8.6 Dilution Chemistry at a Glance: Solutions 8.7 Colloidal Dispersions 8.8 Colligative Properties of Solutions 8.9 Osmosis and Osmotic Pressure Chemistry at a Glance: Summary of Colligative Properties 8.10 Dialysis Chemical Connections: Factors Affecting Gas Solubility; Solubility of Vitamins; Controlled-Release Drugs: Regulating Concentration, Rate, and Location of Release; The Artificial Kidney: A Hemodialysis Machine 9. Chemical Reactions 9.1 Types of Chemical Reactions 9.2 Redox and Nonredox Reactions Chemistry at a Glance: Types of Chemical Reactions 9.3 Terminology Associated with Redox Processes 9.4 Collision Theory and Chemical Reactions 9.5 Exothermic and Endothermic Reactions 9.6 Factors That Influence Reaction Rates 9.7 Chemical Equilibrium Chemistry at a Glance: Factors That Influence Reaction Rates 9.8 Equilibrium Constants 9.9 Altering Equilibrium Conditions: Le Chatelier's Principle Chemical Connections: Combustion Reactions, Carbon Dioxide, and Global Warning; Undesirable Oxidation-Reduction Processes: Metallic Corrosion; Stratospheric Ozone: An Equilibrium Situation 10. Acids, Bases, and Salts 10.1 Arrhenius Acid-Base Theory 10.2 Bronsted-Lowry Acid-Base Theory 10.3 Mono-, Di-, and Triprotic Acids 10.4 Strengths of Acids and Bases 10.5 Ionization Constants for Acids and Bases 10.6 Salts 10.7 Acid-Base Neutralization Reactions 10.8 Self-Ionization of Water 10.9 The pH Concept 10.10 The pKa Method for Expressing Acid Strength 10.11 The pH of Aqueous Salt Solutions Chemistry at a Glance: Acids and Acidic Solutions 10.12 Buffers 10.13 The Henderson-Hasselbalch Equation Chemistry at a Glance: Buffer Systems 10.14 Electrolytes 10.15 Acid-Base Titrations Chemical Connections: Excessive Acidity Within the Stomach: Antacids and Acid Inhibitors; Acid Rain: Excess Acidity; Blood Plasma pH and Hydrolysis; Buffering Action in Human Blood; Electrolytes and Body Fluids 11. Nuclear Chemistry 11.1 Stable and Unstable Nuclides 11.2 The Nature of Radioactivity 11.3 Radioactive Decay 11.4 Rate of Radioactive Decay Chemistry at a Glance: Radioactive Decay 11.5 Transmutation and Bombardment Reactions 11.6 Radioactive Decay Series 11.7 Chemical Effects of Radiation 11.8 Biochemical Effects of Radiation 11.9 Detection of Radiation 11.10 Sources of Radiation Exposure 11.11 Nuclear Medicine 11.12 Nuclear Fission and Nuclear Fusion Chemistry at a Glance: Charecteristics of Nuclear Reactions 11.13 Nuclear and Chemical Reactions Compared Chemical Connections: Tobacco Radioactivity and the Uranium-238 Decay Series; Preserving Food Through Food Irradiation; The Indoor Radon-222 Problem 12. Saturated Hydrocarbons 12.1 Organic and Inorganic Compounds 12.2 Bonding Characteristics of the Carbon Atom 12.3 Hydrocarbons and Hydrocarbon Derivatives 12.4 Alkanes: Acyclic Saturated Hydrocarbons 12.5 Structural Formulas 12.6 Alkane Isomerism 12.7 Conformations of Alkanes 12.8 IUPAC Nomenclature for Alkanes 12.9 Line-Angle Formulas for Alkanes 12.10 Classification of Carbon Atoms 12.11 Branched-Chain Alkyl Groups 12.12 Cycloalkanes 12.13 IUPAC Nomenclature for Cycloalkanes 12.14 Isomerism in Cycloalkanes 12.15 Sources of Alkanes and Cycloalkanes 12.16 Physical Properties of Alkanes and Cycloalkanes 12.17 Chemical Properties of Alkanes and Cycloalkanes Chemistry at a Glance: Properties of Alkanes and Cycloalkanes 12.18 Nomenclature and Properties of Halogenated Alkanes Chemical Connections: The Occurrence of Methane; The Physiological Effects of Alkanes; Chlorofluorocarbons and the Ozone Layer 13. Unsaturated Hydrocarbons 13.1 Unsaturated Hydrocarbons 13.2 Characteristics of Alkenes and Cycloalkenes 13.3 Names for Alkenes and Cycloalkenes 13.4 Line-Angle Formulas for Alkenes 13.5 Isomerism in Alkenes 13.6 Naturally Occurring Alkenes 13.7 Physical Properties of Alkenes 13.8 Chemical Reactions of Alkenes 13.9 Polymerization of Alkenes: Addition Polymers 13.10 Alkynes Chemistry at a Glance: Chemical Reactions of Alkenes Chemistry at a Glance: IUPAC Nomenclature for Alkanes, Alkenes, and Alkynes 13.11 Aromatic Hydrocarbons 13.12 Names for Aromatic Hydrocarbons 13.13 Aromatic Hydrocarbons: Physical Properties and Sources 13.14 Chemical Reactions of Aromatic Hydrocarbons 13.15 Fused-Ring Aromatic Compounds Chemical Connections: Ethene: A Plant Hormone and High-Volume Industrial Chemical; Cis-Trans Isomerism and Vision; Carotenoids: A Source of Color; Fused-Ring Aromatic Hydrocarbons and Cancer 14. Alcohols, Phenols, and Ethers 14.1 Bonding Characteristics of Oxygen Atoms in Organic Compounds 14.2 Structural Characteristics of Alcohols 14.3 Nomenclature for Alcohols 14.4 Isomerism for Alcohols 14.5 Important Commonly Encountered Alcohols 14.6 Physical Properties of Alcohols 14.7 Preparation of Alcohols 14.8 Classification of Alcohols 14.9 Chemical Reactions of Alcohols Chemistry at a Glance: Summary of Chemical Reactions Involving Alcohols 14.10 Polymeric Alcohols 14.11 Structural Characteristics of Phenols 14.12 Nomenclature for Phenols 14.13 Physical and Chemical Properties of Phenols 14.14 Occurrence of and Uses for Phenols 14.15 Structural Characteristics of Ethers 14.16 Nomenclature for Ethers 14.17 Isomerism for Ethers 14.18 Physical and Chemical Properties of Ethers 14.19 Cyclic Ethers 14.20 Sulfur Analogs and Alcohols 14.21 Sulfur Analogs of Ethers Chemical Connections: Menthol: A Useful Naturally Occurring Terpene Alcohol; Ethers as General Anesthetics; Marijuana: The Most Commonly Used Illicit Drug; Garlic and Onions: Odiferous Medicinal Plants 15. Aldehydes and Ketones 15.1 The Carbonyl Group 15.2 Structure of Aldehydes and Ketones 15.3 Nomenclature for Aldehydes 15.4 Nomenclature for Ketones 15.5 Isomerism for Aldehydes and Ketones 15.6 Selected Common Aldehydes and Ketones 15.7 Physical Properties of Aldehydes and Ketones 15.8 Preparation of Aldehydes and Ketones 15.9 Oxidation and Reduction of Aldehydes and Ketones 15.10 Reaction of Aldehydes and Ketones with Alcohols Chemistry at a Glance: Summary of Chemical Reactions Involving Aldehydes and Ketones 15.11 Formaldehyde-Based Polymers 15.12 Sulfur-Containing Carbonyl Groups Chemical Connections: Lachrymatory Aldehydes and Ketones; Melanin: A Hair and Skin Pigment; Diabetes, Aldehyde Oxidation, and Glucose Testing 16. Carboxylic Acids, Esters, and Other Acid Derivatives 16.1 Structure of Carboxylic Acids and Their Derivatives 16.2 IUPAC Nomenclature for Carboxylic Acids 16.3 Common Names for Carboxylic Acids 16.4 Polyfunctional Carboxylic Acids 16.5 Metabolic Acids 16.6 Physical Properties of Carboxylic Acids 16.7 Preparation of Carboxylic Acids 16.8 Acidity of Carboxylic Acids 16.9 Carboxylic Acid Salts 16.10 Structure of Esters 16.11 Preparation of Esters Chemistry at a Glance: Summary of the H Versus R Relationship for Pairs of Hydrocarbon Derivatives 16.12 Nomenclature for Esters 16.13 Selected Common Esters 16.14 Isomerism for Carboxylic Acids and Esters 16.15 Physical Properties of Esters 16.16 Chemical Reactions of Esters 16.17 Sulfur Analogs of Esters 16.18 Polyesters Chemistry at a Glance: Summary of Chemical Reactions Involving Carboxylic Acids and Esters 16.19 Acid Chlorides and Acid Anhydrides 16.20 Esters and Anhydrides of Inorganic Acids Chemical Connections: Nonprescription Pain Relievers Derived from Propanoic Acid; Carboxylic Acids and Skin Care; Aspirin; Nitroglycerin: An Inorganic Triester 17. Amines and Amides 17.1 Bonding Characteristics of Nitrogen Atoms in Organic Compounds 17.2 Structure and Classification of Amines 17.3 Nomenclature for Amines 17.4 Isomerism for Amines 17.5 Physical Properties of Amines 17.6 Basicity of Amines 17.7 Amine Salts 17.9 Heterocyclic Amines 17.10 Selected Biochemically Important Amines 17.11 Alkaloids 17.12 Structure and Classification of Amides 17.13 Nomenclature for Amides 17.14 Selected Amides and Their Uses 17.15 Properties of Amides 17.16 Preparation of Amides 17.17 Hydrolysis of Amides 17.18 Polyamides and Polyurethanes Chemistry at a Glance: Summary of Chemical Reactions Involving Amines and Amides Chemical Connections: Caffeine: The Most Widely Used Central Nervous System Stimulant; Amphetamines: Central Nervous System Stimulants; Alkaloids Present in Chocolate; Acetaminophen: A Substituted Amide 18. Carbohydrates 18.1 Biochemistry--An Overview 18.2 Occurrence and Functions of Carbohydrates 18.3 Classification of Carbohydrates 18.4 Chirality: Handedness in Molecules 18.5 Stereoisomerism: Enantiomers and Diastereomers 18.6 Designating Handedness Using Fischer Projections Chemistry at a Glance: Constitutional Isomers and Stereoisomers 18.7 Properties of Enantiomers 18.8 Classification of Monosaccharides 18.9 Biochemically Important Monosaccharides 18.10 Cyclic Forms of Monosaccharides 18.11 Haworth Projection Formulas 18.12 Reactions of Monosaccharides 18.13 Disaccharides Chemistry at a Glance: Sugar Terminology Associated with Monosaccharides and Their Derivatives 18.14 General Characteristics of Polysaccharides 18.15 Storage Polysaccharides 18.16 Structural Polysaccharides Chemistry at a Glance: Types of Glycosidic Linkages for Common Glucose-Containing Di- and Polysaccharides 18.17 Acidic Polysaccharides 18.18 Glycolipids and Glycoproteins 18.19 Dietary Considerations and Carbohydrates Chemical Connections: Blood Types and Monosaccharides; Lactose Intolerance and Galactosemia; Artifical Sweeteners; Good and Bad Carbs: The Glycemic Index 19. Lipids 19.1 Structure and Classification of Lipids 19.2 Fatty Acids: Lipid Building Blocks 19.3 Physical Properties of Fatty Acids 19.4 Energy-Storage Lipids: Triacylglycerols 19.5 Dietary Considerations and Triacylglycerols 19.6 Chemical Reactions of Triacylglycerols Chemistry at a Glance: Classification Schemes for Fatty Acid Residues Present in Triacylglycerols 19.7 Membrane Lipids: Phospholipids 19.8 Membrane Lipids: Sphingoglycolipids Chemistry at a Glance: Terminology for and Structural Relationships Among Various Types of Fatty-Acid-Containing Lipids 19.9 Membrane Lipids: Cholesterol 19.10 Cell Membranes 19.11 Emulsification Lipids: Bile Acids 19.12 Messenger Lipids: Steroid Hormones 19.13 Messenger Lipids: Eicosanoids 19.14 Protective-Coating Lipids: Biological Waxes Chemistry at a Glance: Types of Lipids and How They Function Chemical Connections: The Fat Content of Tree Nuts and Peanuts; Artificial Fat Substitutes; The Cleansing Action of Soap; Trans Fatty Acids and Blood Cholesterol Levels; Steroid Drugs in Sports; The Mode of Action for Anti-Inflammatory Drugs 20. Proteins 20.1 Characteristics of Proteins 20.2 Amino Acids: The Building Blocks for Proteins 20.3 Chirality and Amino Acids 20.4 Acid-Base Properties of Amino Acids 20.5 Cysteine: A Chemically Unique Amino Acid 20.6 Peptide Formation 20.7 Biochemically Important Small Peptides 20.8 General Structural Characteristics of Proteins 20.9 Primary Structure of Proteins 20.10 Secondary Structure of Proteins 20.11 Tertiary Structure of Proteins 20.12 Quaternary Structure of Proteins 20.13 Fibrous and Globular Proteins Chemistry at a Glance: Protein Structure 20.14 Protein Hydrolysis 20.15 Protein Denaturation 20.16 Glycoproteins 20.17 Lipoproteins Chemical Connections: The Essential Amino Acids; Substitutes for Human Insulin; Protein Structure and the Color of Meat; Denaturation and Human Hair; Cyclosporine: An Antirejection Drug; Lipoproteins and Heart Attack Risk 21. Enzymes and Vitamins 21.1 General Characteristics of Enzymes 21.2 Nomenclature and Classification of Enzymes 21.3 Enzyme Structure 21.4 Models of Enzyme Action 21.5 Enzyme Specificity 21.6 Factors That Affect Enzyme Activity Chemistry at a Glance: Enzyme Activity 21.7 Enzyme Inhibition 21.8 Regulation of Enzyme Activity: Allosteric Enzymes Chemistry at a Glance: Enzyme Inhibition 21.9 Regulation of Enzyme Activity: Zymogens 21.10 Antibiotics That Inhibit Enzyme Activity 21.11 Medical Uses of Enzymes 21.12 Vitamins 21.13 Water-Soluble Vitamins 21.14 Fat-Soluble Vitamins Chemical Connections: H. pylori and Stomach Ulcers; Enzymatic Browning: Discoloration of Fruits and Vegetables; Heart Attacks and Enzyme Analysis 22. Nucleic Acids 22.1 Types of Nucleic Acids 22.2 Nucleotides: Building Blocks of Nucleic Acids 22.3 Primary Nucleic Acid Structure 22.4 The DNA Double Helix 22.5 Replication of DNA Molecules 22.6 Overview of Protein Synthesis 22.7 Ribonucleic Acids Chemistry at a Glance: DNA Replication 22.8 Transcription: RNA Synthesis 22.9 The Genetic Code 22.10 Anticodons and tRNA Molecules 22.11 Translation: Protein Synthesis 22.12 Mutations Chemistry at a Glance: Protein Synthesis 22.13 Nucleic Acids and Viruses 22.14 Recombinant DNA and Genetic Engineering 22.15 The Polymerase Chain Reaction 22.16 DNA Sequencing Chemical Connections: Use of Synthetic Nucleic Acid Bases in Medicine; Antibiotics That Inhibit Bacterial Protein Synthesis 23. Biochemical Energy Production 23.1 Metabolism 23.2 Metabolism and Cell Structure 23.3 Important Intermediate Compounds in Metabolic Pathways 23.4 High-Energy Phosphate Compounds 23.5 An Overview of Biochemical Energy Production 23.6 The Citric Acid Cycle Chemistry at a Glance: Simplified Summary of the Four Stages of Biochemical Energy Production Chemistry at a Glance: Summary of the Reactions of the Citric Acid Cycle 23.7 The Electron Transport Chain Chemistry at a Glance: Summary of the Flow of Electrons Through the Four Complexes of the Electron Transport Chain 23.8 Oxidative Phosphorylation Chemistry at a Glance: Summary of the Common Metabolic Pathway 23.9 ATP Production for the Common Metabolic Pathway 23.10 The Importance of ATP 23.11 Non-ETC Oxygen-Consuming Reactions Chemical Connections: Cyanide Poisoning; Brown Fat, Newborn Babies, and Hibernating Animals; Flavonoids: An Important Class of Dietary Antioxidants 24. Carbohydrate Metabolism 24.1 Digestion and Absorption of Carbohydrates 24.2 Glycolysis 24.3 Fates of Pyruvate 24.4 ATP Production for the Complete Oxidation of Glucose 24.5 Glycogen Synthesis and Degradation 24.6 Gluconeogenesis and the Cori Cycle 24.7 Terminology for Glucose Metabolic Pathways 24.8 The Pentose Phosphate Pathway Chemistry at a Glance: Glucose Metabolism 24.9 Hormonal Control of Carbohydrate Metabolism Chemical Connections: Lactate Accumulation; Diabetes Mellitus 25. Lipid Metabolism 25.1 Digestion and Absorption of Lipids 25.2 Triacylglycerol Storage and Mobilization 25.3 Glycerol Metabolism 25.4 Oxidation of Fatty Acids 25.5 ATP Production from Fatty Acid Oxidation 25.6 Ketone Bodies 25.7 Biosynthesis of Fatty Acids: Lipogenesis 25.8 Biosynthesis of Cholesterol Chemistry at a Glance: Interrelationships Between Carbohydrate and Lipid Metabolism 25.9 Relationships Between Lipid and Carbohydrate Metabolism Chemical Connections: High-Intensity Versus Low-Intensity Workouts; Statins: Drugs That Lower Plasma Levels of Cholesterol 26. Protein Metabolism 26.1 Protein Digestion and Absorption 26.2 Amino Acid Utilization 26.3 Transamination and Oxidative Deamination 26.4 The Urea Cycle 26.5 Amino Acid Carbon Skeletons 26.6 Amino Acid Biosynthesis 26.7 Hemoglobin Catabolism Chemistry at a Glance: Interrelationships Among Lipid, Carbohydrate, and Protein Metabolism 26.8 Interrelationships Among Metabolic Pathways Chemical Connections: The Chemical Composition of Urine Arginine, Citrulline, and the Chemical Messenger Nitric Oxide

Additional information

GOR013735885
9780618606061
0618606068
General, Organic and Biological Chemistry: Student Text by H. Stephen Stoker
Used - Well Read
Hardback
Cengage Learning, Inc
20060110
896
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a used book. We do our best to provide good quality books for you to read, but there is no escaping the fact that it has been owned and read by someone else previously. Therefore it will show signs of wear and may be an ex library book

Customer Reviews - General, Organic and Biological Chemistry