Cart
Free US shipping over $10
Proud to be B-Corp

Theory and Applications of Fractional Differential Equations A.A. Kilbas (Belarusian State University, Minsk, Belarus)

Theory and Applications of Fractional Differential Equations By A.A. Kilbas (Belarusian State University, Minsk, Belarus)

Theory and Applications of Fractional Differential Equations by A.A. Kilbas (Belarusian State University, Minsk, Belarus)


$263.49
Condition - New
Only 2 left

Summary

Provides developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus. This book is application oriented and it contains the theory of Fractional Differential Equations. It provides problems and directions for further investigations.

Theory and Applications of Fractional Differential Equations Summary

Theory and Applications of Fractional Differential Equations: Volume 204 by A.A. Kilbas (Belarusian State University, Minsk, Belarus)

This monograph provides the most recent and up-to-date developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus.The subject of fractional calculus and its applications (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering.Some of the areas of present-day applications of fractional models include Fluid Flow, Solute Transport or Dynamical Processes in Self-Similar and Porous Structures, Diffusive Transport akin to Diffusion, Material Viscoelastic Theory, Electromagnetic Theory, Dynamics of Earthquakes, Control Theory of Dynamical Systems, Optics and Signal Processing, Bio-Sciences, Economics, Geology, Astrophysics, Probability and Statistics, Chemical Physics, and so on.In the above-mentioned areas, there are phenomena with estrange kinetics which have a microscopic complex behaviour, and their macroscopic dynamics can not be characterized by classical derivative models.The fractional modelling is an emergent tool which use fractional differential equations including derivatives of fractional order, that is, we can speak about a derivative of order 1/3, or square root of 2, and so on. Some of such fractional models can have solutions which are non-differentiable but continuous functions, such as Weierstrass type functions. Such kinds of properties are, obviously, impossible for the ordinary models.What are the useful properties of these fractional operators which help in the modelling of so many anomalous processes? From the point of view of the authors and from known experimental results, most of the processes associated with complex systems have non-local dynamics involving long-memory in time, and the fractional integral and fractional derivative operators do have some of those characteristics.This book is written primarily for the graduate students and researchers in many different disciplines in the mathematical, physical, engineering and so many others sciences, who are interested not only in learning about the various mathematical tools and techniques used in the theory and widespread applications of fractional differential equations, but also in further investigations which emerge naturally from (or which are motivated substantially by) the physical situations modelled mathematically in the book.This monograph consists of a total of eight chapters and a very extensive bibliography. The main objective of it is to complement the contents of the other books dedicated to the study and the applications of fractional differential equations. The aim of the book is to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy type problems involving nonlinear ordinary fractional differential equations, explicit solutions of linear differential equations and of the corresponding initial-value problems through different methods, closed-form solutions of ordinary and partial differential equations, and a theory of the so-called sequential linear fractional differential equations including a generalization of the classical Frobenius method, and also to include an interesting set of applications of the developed theory.Key features:- It is mainly application oriented.- It contains a complete theory of Fractional Differential Equations.- It can be used as a postgraduate-level textbook in many different disciplines within science and engineering.- It contains an up-to-date bibliography.- It provides problems and directions for further investigations.- Fractional Modelling is an emergent tool with demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering.- It contains many examples.- and so on!

Theory and Applications of Fractional Differential Equations Reviews

"This book presents a nice and systematic treatment of the theory and applications of fractional differential equations." --ZENTRALBLATT MATH DATABASE 1931-2007"This book is a valuable resource for any worker in electronic structure theory, both for its insight into the utility of a variety of relativistic methods, and for its assessment of the contribution of relativity to a wide range of experimental properties." --THEOR CHEM ACC (2007)"For obvious reasons, the book is rather technical, but its main goal is the ultimate applications. These are explicitly or implicitly present during the whole text but they are only treated in their mathematical formulation. I.e., the electrotechnical, biological, optical, or whatever exotic context it could have been embedded in is avoided here. The book is thus certainly interesting for the (applied) mathematician, but, also for researchers who are working in one of the quite diverse applied areas where fractional models are more and more used these days." --Bulletin of the Belgian Mathematical Society

About A.A. Kilbas (Belarusian State University, Minsk, Belarus)

Dr. Hari M. Srivastava is Professor Emeritus in the Department of Mathematics and Statistics at the University of Victoria, British Columbia, Canada. He earned his Ph.D. degree in 1965 while he was a full-time member of the teaching faculty at the Jai Narain Vyas University of Jodhpur, India. Dr. Srivastava has held (and continues to hold) numerous Visiting, Honorary and Chair Professorships at many universities and research institutes in di?erent parts of the world. Having received several D.Sc. (honoris causa) degrees as well as honorary memberships and fellowships of many scienti?c academies and scienti?c societies around the world, he is also actively associated editorially with numerous international scienti?c research journals as an Honorary or Advisory Editor or as an Editorial Board Member. He has also edited many Special Issues of scienti?c research journals as the Lead or Joint Guest Editor, including the MDPI journal Axioms, Mathematics, and Symmetry, the Elsevier journals, Journal of Computational and Applied Mathematics, Applied Mathematics and Computation, Chaos, Solitons & Fractals, Alexandria Engineering Journal, and Journal of King Saud University Science, the Wiley journal, Mathematical Methods in the Applied Sciences, the Springer journals, Advances in Di?erence Equations, Journal of Inequalities and Applications, Fixed Point Theory and Applications, and Boundary Value Problems, the American Institute of Physics journal, Chaos: An Interdisciplinary Journal of Nonlinear Science, and the American Institute of Mathematical Sciences journal, AIMS Mathematics, among many others. Dr. Srivastava has been a Clarivate Analytics (Web of Science) Highly-Cited Researcher since 2015. Dr. Srivastavas research interests include several areas of Pure and Applied Mathematical Sciences, such as Real and Complex Analysis, Fractional Calculus and Its Applications, Integral Equations and Transforms, Higher Transcendental Functions and Their Applications, q-Series and q-Polynomials, Analytic Number Theory, Analytic and Geometric Inequalities, Probability and Statistics, and Inventory Modeling and Optimization. He has published 36 books, monographs, and edited volumes, 36 book (and encyclopedia) chapters, 48 papers in international conference proceedings, and more than 1450 peer-reviewed international scienti?c research journal articles, as well as Forewords and Prefaces to many books and journals.

Table of Contents

1. Preliminaries.2. Fractional Integrals and Fractional Derivatives.3. Ordinary Fractional Differential Equations. Existence and Uniqueness Theorems.4. Methods for Explicitly solving Fractional Differential Equations.5. Integral Transform Methods for Explicit Solutions to Fractional Differential Equations.6. Partial Fractional Differential Equations.7. Sequential Linear Differential Equations of Fractional Order.8. Further Applications of Fractional Models.BibliographySubject Index

Additional information

NPB9780444518323
9780444518323
0444518320
Theory and Applications of Fractional Differential Equations: Volume 204 by A.A. Kilbas (Belarusian State University, Minsk, Belarus)
New
Hardback
Elsevier Science & Technology
2006-01-12
540
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Theory and Applications of Fractional Differential Equations