Cart
Free US shipping over $10
Proud to be B-Corp

Distributed Machine Learning with PySpark Abdelaziz Testas

Distributed Machine Learning with PySpark By Abdelaziz Testas

Distributed Machine Learning with PySpark by Abdelaziz Testas


$59.59
Condition - New
Only 3 left

Distributed Machine Learning with PySpark Summary

Distributed Machine Learning with PySpark: Migrating Effortlessly from Pandas and Scikit-Learn by Abdelaziz Testas

Migrate from pandas and scikit-learn to PySpark to handle vast amounts of data and achieve faster data processing time. This book will show you how to make this transition by adapting your skills and leveraging the similarities in syntax, functionality, and interoperability between these tools.

Distributed Machine Learning with PySpark offers a roadmap to data scientists considering transitioning from small data libraries (pandas/scikit-learn) to big data processing and machine learning with PySpark. You will learn to translate Python code from pandas/scikit-learn to PySpark to preprocess large volumes of data and build, train, test, and evaluate popular machine learning algorithms such as linear and logistic regression, decision trees, random forests, support vector machines, Naive Bayes, and neural networks.

After completing this book, you will understand the foundational concepts of data preparation and machine learning and will have the skills necessary to apply these methods using PySpark, the industry standard for building scalable ML data pipelines.

What You Will Learn

  • Master the fundamentals of supervised learning, unsupervised learning, NLP, and recommender systems
  • Understand the differences between PySpark, scikit-learn, and pandas
  • Perform linear regression, logistic regression, and decision tree regression with pandas, scikit-learn, and PySpark
  • Distinguish between the pipelines of PySpark and scikit-learn

Who This Book Is For

Data scientists, data engineers, and machine learning practitioners who have some familiarity with Python, but who are new to distributed machine learning and the PySpark framework.

About Abdelaziz Testas

Abdelaziz Testas, Ph.D., is a data scientist with over a decade of experience in data analysis and machine learning, specializing in the use of standard Python libraries and Spark distributed computing. He holds a Ph.D. in Economics from Leeds University and a Master's degree in Finance from Glasgow University. He has also earned several certificates in computer science and data science.

In the last ten years, he has worked for Nielsen in Fremont, California as a Lead Data Scientist focused on improving the company's audience measurement through planning, initiating, and executing end-to-end data science projects and methodology work. He has created advanced solutions for Nielsen's digital ad and content rating products by leveraging subject matter expertise in media measurement and data science. He is passionate about helping others improve their machine learning skills and workflows, and is excited to share his knowledge and experience with a wider audience through this book.

Table of Contents

Chapter 1: An Easy Transition.- Chapter 2: Selecting Algorithms.- Chapter 3: Multiple Linear Regression with Pandas, Scikit-Learn, and PySpark.- Chapter 4: Decision Trees for Regression with Pandas, Scikit-Learn, and PySpark.- Chapter 5: Random Forests for Regression with Pandas, Scikit-Learn, and PySpark.- Chapter 6: Gradient-Boosted Tree Regression with Pandas, Scikit-Learn and PySpark.- Chapter 7: Logistic Regression with Pandas, Scikit-Learn and PySpark.- Chapter 8: Decision Tree Classification with Pandas, Scikit-Learn and PySpark.- Chapter 9: Random Forest Classification with Scikit-Learn and PySpark.- Chapter 10: Support Vector Machine Classification with Pandas, Scikit-Learn and PySpark.- Chapter 11: Naive Bayes Classification with Pandas, Scikit-Learn and PySpark.- Chapter 12: Neural Network Classification with Pandas, Scikit-Learn and PySpark.- Chapter 13: Recommender Systems with Pandas, Surprise and PySpark.- Chapter 14: Natural Language Processing with Pandas, Scikit-Learn and PySpark.- Chapter 15: K-Means Clustering with Pandas, Scikit-Learn and PySpark.- Chapter 16: Hyperparameter Tuning with Scikit-Learn and PySpark.- Chapter 17: Pipelines with Scikit-Learn and PySpark.- Chapter 18: Deploying Models in Production with Scikit-Learn and PySpark.




Additional information

NGR9781484297506
9781484297506
1484297504
Distributed Machine Learning with PySpark: Migrating Effortlessly from Pandas and Scikit-Learn by Abdelaziz Testas
New
Paperback
APress
2023-12-03
240
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Distributed Machine Learning with PySpark