Cart
Free US shipping over $10
Proud to be B-Corp

Applied Unsupervised Learning with R Alok Malik

Applied Unsupervised Learning with R By Alok Malik

Applied Unsupervised Learning with R by Alok Malik


$30.95
Condition - Good
Only 1 left

Summary

Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions.

Faster Shipping

Get this product faster from our US warehouse

Applied Unsupervised Learning with R Summary

Applied Unsupervised Learning with R: Uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA by Alok Malik

Design clever algorithms that discover hidden patterns and draw responses from unstructured, unlabeled data.

Key Features
  • Build state-of-the-art algorithms that can solve your business' problems
  • Learn how to find hidden patterns in your data
  • Revise key concepts with hands-on exercises using real-world datasets
Book Description

Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and features of R that enable you to understand your data better and get answers to your most pressing business questions.

This book begins with the most important and commonly used method for unsupervised learning - clustering - and explains the three main clustering algorithms - k-means, divisive, and agglomerative. Following this, you'll study market basket analysis, kernel density estimation, principal component analysis, and anomaly detection. You'll be introduced to these methods using code written in R, with further instructions on how to work with, edit, and improve R code. To help you gain a practical understanding, the book also features useful tips on applying these methods to real business problems, including market segmentation and fraud detection. By working through interesting activities, you'll explore data encoders and latent variable models.

By the end of this book, you will have a better understanding of different anomaly detection methods, such as outlier detection, Mahalanobis distances, and contextual and collective anomaly detection.

What you will learn
  • Implement clustering methods such as k-means, agglomerative, and divisive
  • Write code in R to analyze market segmentation and consumer behavior
  • Estimate distribution and probabilities of different outcomes
  • Implement dimension reduction using principal component analysis
  • Apply anomaly detection methods to identify fraud
  • Design algorithms with R and learn how to edit or improve code
Who this book is for

Applied Unsupervised Learning with R is designed for business professionals who want to learn about methods to understand their data better, and developers who have an interest in unsupervised learning. Although the book is for beginners, it will be beneficial to have some basic, beginner-level familiarity with R. This includes an understanding of how to open the R console, how to read data, and how to create a loop. To easily understand the concepts of this book, you should also know basic mathematical concepts, including exponents, square roots, means, and medians.

About Alok Malik

Alok Malik is a data scientist based in India. He has previously worked on creating and deploying unsupervised learning solutions in fields such as finance, cryptocurrency trading, logistics, and natural language processing. He has a bachelor's degree in technology from the Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, where he studied electronics and communication engineering. Bradford Tuckfield has designed and implemented data science solutions for firms in a variety of industries. He studied math for his bachelor's degree and economics for his Ph.D. He has written for scholarly journals and the popular press, on topics including linear algebra, psychology, and public policy.

Table of Contents

Table of Contents
  1. Introduction to Clustering Methods
  2. Advanced Clustering Methods
  3. Probability Distributions
  4. Dimension Reduction
  5. Data Comparison Methods
  6. Anomaly Detection

Additional information

CIN1789956390G
9781789956399
1789956390
Applied Unsupervised Learning with R: Uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA by Alok Malik
Used - Good
Paperback
Packt Publishing Limited
2019-03-27
320
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a used book - there is no escaping the fact it has been read by someone else and it will show signs of wear and previous use. Overall we expect it to be in good condition, but if you are not entirely satisfied please get in touch with us

Customer Reviews - Applied Unsupervised Learning with R