Part I. History 1. The Early History of Automated Deduction (Martin Davis) Part II. Classical Logic. 2. Resolution Theorem Proving (Leo Bachmair, Harald Ganzinger) 3. Tableaux and Related Methods (Reiner Hahnle) 4. The Inverse Method (Anatoli Degtyarev, Andrei Voronkov) 5. Normal Form Transformations (Matthias Baaz, Uwe Egly, Alexander Leitsch) 6. Computing Small Clause Normal Forms (Andreas Nonnengart, Christoph Weidenbach) Part III. Equality and other theories. 7. Paramodulation-Based Theorem Proving (Robert Nieuwenhuis, Albert Rubio) 8. Unification Theory (Franz Baader, Wayne Snyder) 9. Rewriting (Nachum Dershowitz, David A. Plaisted) 10. Equality Reasoning in Sequent-Based Calculi (Anatoli Degtyarev, Andrei Voronkov) 11. Automated Reasoning in Geometry (Shang-Ching Chou, Xiao-Shan Gao) 12. Solving Numerical Constraints (Alexander Bockmayr, Volker Weispfenning) Part IV. Induction. 13. The Automation of Proof by Mathematical Induction (Alan Bundy) 14. Inductionless Induction (Hubert Comon)