Cart
Free US shipping over $10
Proud to be B-Corp

Groebner Bases and Applications Bruno Buchberger (Johannes Kepler Universitat Linz)

Groebner Bases and Applications By Bruno Buchberger (Johannes Kepler Universitat Linz)

Groebner Bases and Applications by Bruno Buchberger (Johannes Kepler Universitat Linz)


$124.79
Condition - New
Only 2 left

Summary

This is a short and easy-to-read account of the theory of Groebner bases and its applications. It is in two parts, the first consisting of tutorial lectures written by leading experts. The second part contains seventeen original papers on Groebner bases. In an appendix are English translations of the original German papers of Bruno Buchberger in which Groebner bases were introduced.

Groebner Bases and Applications Summary

Groebner Bases and Applications by Bruno Buchberger (Johannes Kepler Universitat Linz)

The theory of Groebner bases, invented by Bruno Buchberger, is a general method by which many fundamental problems in various branches of mathematics and engineering can be solved by structurally simple algorithms. The method is now available in all major mathematical software systems. This book provides a short and easy-to-read account of the theory of Groebner bases and its applications. It is in two parts, the first consisting of tutorial lectures, beginning with a general introduction. The subject is then developed in a further twelve tutorials, written by leading experts, on the application of Groebner bases in various fields of mathematics. In the second part are seventeen original research papers on Groebner bases. An appendix contains the English translations of the original German papers of Bruno Buchberger in which Groebner bases were introduced.

Groebner Bases and Applications Reviews

'This book provides a short and easy-to-read account of the theory of Groebner bases and its applications.' L'Enseignment Mathematique
'The book is warmly recommended ...' European Mathematical Society

Table of Contents

Preface; 1. Programme committee; Introduction to Groebner bases B. Buchberger; 2. Groebner bases, symbolic summation and symbolic integration F. Chyzak; 3. Groebner bases and invariant theory W. Decker and T. de Jong; 4. Groebner bases and generic monomial ideals M. Green and M. Stillman; 5. Groebner bases and algebraic geometry G. M. Greuel; 6. Groebner bases and integer programming S. Hosten and R. Thomas; 7. Groebner bases and numerical analysis H. M. Moeller; 8. Groebner bases and statistics L. Robbiano; 9. Groebner bases and coding theory S. Sakata; 10. Janet bases for symmetry groups F. Schwarz; 11. Groebner bases in partial differential equations D. Struppa; 12. Groebner bases and hypergeometric functions B. Sturmfels and N. Takayama; 13. Introduction to noncommutative Groebner bases theory V. Ufnarovski; 14. Groebner bases applied to geometric theorem proving and discovering D. Wang; 15. The fractal walk B. Amrhein and O. Gloor; 16. Groebner bases property on elimination ideal in the noncommutative case M. A. Borges and M. Borges; 17. The CoCoA 3 framework for a family of Buchberger-like algorithms A. Capani and G. Niesi; 18. Newton identities in the multivariate case: Pham systems M.-J. Gonzalez-Lopez and L. Gonzalez-Vega; 19. Groebner bases in rings of differential operators M. Insa and F. Pauer; 20. Canonical curves and the Petri scheme J. B. Little; 21. The Buchberger algorithm as a tool for ideal theory of polynomial rings in constructive mathematics H. Lombardi and H. Perdry; 22. Groebner bases in non-commutative reduction rings K. Madlener and B. Reinert; 23. Effective algorithms for intrinsically computing SAGBI-Groebner bases in a polynomial ring over a field J. L. Miller; 24. De Nugis Groebnerialium 1: Eagon, Northcott, Groebner F. Mora; 25. An application of Groebner bases to the decomposition of rational mappings J. Muller-Quade, R. Steinwandt and T. Beth; 26. On some basic applications of Groebner bases in noncommutative polynomial rings P. Nordbeck; 27. Full factorial designs and distracted fractions L. Robbiano and M. P. Rogantin; 28. Polynomial interpolation of minimal degree and Groebner bases T. Sauer; 29. Inversion of birational maps with Groebner bases J. Schicho; 30. Reverse lexicographic initial ideas of generic ideals are finitely generated J. Snellman; 31. Parallel computation and Groebner bases: an application for converting bases with the Groebner walk Q.-N. Tran; 32. Appendix. an algorithmic criterion for the solvability of a system of algebraic equations B. Buchberger (translated by M. Abramson and R. Lumbert); Index of Tutorials.

Additional information

NLS9780521632980
9780521632980
0521632986
Groebner Bases and Applications by Bruno Buchberger (Johannes Kepler Universitat Linz)
New
Paperback
Cambridge University Press
1998-02-26
564
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Groebner Bases and Applications