Introductory Problem Courses in Analysis and Topology Summary
Introductory Problem Courses in Analysis and Topology by E.E. Moise
Unfortunately we do not have a summary for this item at the moment
Table of Contents
Analysis.- 1. Notations.- 2. The Real Numbers, Regarded as an Ordered Field.- 3. Functions, Limits, and Continuity.- 4. Integers. Sequences. The Induction Principle.- 5. The Continuity of ?.- 6. The Riemann Integral of a Bounded Function.- 7. Necessary and Sufficent Conditions for Integrability.- 8. Invertible Functions. Arc-length and Path-length.- 9. Point-wise Convergence and Uniform Convergence.- 10. Infinite Series.- 11. Absolute Convergence. Rearrangements of Series.- 12. Power Series.- 13. Power Series for Elementary Functions.- Topology.- 1. Sets and Functions.- 2. Metric Spaces.- 3. Neighborhood Spaces and Topological Spaces.- 4. Cardinality.- 5. The Completeness of ?. Uncountable Sets.- 6. The Schroeder-Bernstein Theorem.- 7. Compactness in ?n.- 8. Compactness in Abstract Spaces.- 9. The Use of Choice in Existence Proofs.- 10. Linearly Ordered Spaces.- 11. Mappings Between Metric Spaces.- 12. Mappings Between Topological Spaces.- 13. Connectivity.- 14. Well-ordering.- 15. The Existence of Well-orderings. Zorn's Lemma.
Additional information
NPB9780387907017
9780387907017
0387907017
Introductory Problem Courses in Analysis and Topology by E.E. Moise
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time
Customer Reviews - Introductory Problem Courses in Analysis and Topology