Cart
Free US shipping over $10
Proud to be B-Corp

Biorelated Polymers Emo Chiellini

Biorelated Polymers By Emo Chiellini

Biorelated Polymers by Emo Chiellini


$141.49
Condition - New
Only 2 left

Summary

Combined Proceedings of the First and Second International Conference on Biopolymer Technology, organised by the International Centre of Biopolymer Technology, held in Coimbra, Portugal on September 29-October 1, 1999 and in Ischia (Naples), Italy on October 25-27, 2000

Biorelated Polymers Summary

Biorelated Polymers: Sustainable Polymer Science and Technology by Emo Chiellini

Application of polymers from renewable resources - also identified as biopolymers - has a large potential market due to the current emphasis on sustainable technology. For optimal R&D achievements and hence benefits from these market opportunities, it is essential to combine the expertise available in the vast range ofdifferent disciplines in biopolymer science and technology. The International Centre of Biopolymer Technology - ICBT - has been created with support from the European Commission to facilitate co operation and the exchange of scientific knowledge between industries, universities and other research groups. One of the activities to reach these objectives, is the organisation ofa conference on Biopolymer Technology. In September 1999, the first international conference on Biopolymer Technology was held in Coimbra, Portugal. Because of its success - both scientifically and socially - and because ofthe many contacts that resulted in exchange missions or other ICBT activities, it was concluded that a second conference on Biopolymer Technology was justified. This second conference was held in Ischia, Italy in October 2000. And again, the scientific programme contained a broad spectrum ofpresentations in a range of fields such as biopolymer synthesis, modification, technology, applications, material testing and analytical methods.

Table of Contents

Part 1: Biopolymers and renewable resources 1. Potato starch base resilient thermoplastic foams; R. van Tuil, et al. 2. The new starch; I. Tomka, et al. 3. Structural materials made of renewable resources (biocomposites); J. Nickel, U. Riedel. 4. Isolation, characterisation and material properties of 4-O-Methylglucuronoxylan from Aspen; M. Gustavsson, et al. 5. An original method of esterification of cellulose and starch; S. Girardeau, et al. Part 2: Biopolymer technology and applications. 6. Biopolymers and artificial biopolymers in biomedical applications, an overview; M. Vert 7. Novel synthesis of biopolymers and their medical applications; Z. Jedlinski, M. Juzwa. 8. Composite films based on poly(vinylalcohol) and lignocellulosic fibres: Preparation and Characterizations; E. Chiellini, et al. 9. Composite materials based on gelatin and fillers from renewable resources: Thermal and mechanical properties; E. Chiellini, et al. 10. Properties of PHAs and their correlation to fermentation conditions; F. Schellauf, et al. Part 3: (Bio)Synthesis and modifications. 11. Synthesis of biopolymers; G. Braunegg, et al. 12. The production of poly-3-hydroxybutyrate-CO-3-hydroxyvalerate with Pseudomonas cepacia ATCC 17759 on various carbon sources; E. Wallner, et al. 13. Production of poly-3-hydroxybutyrate-CO-3-hydroxyvalerate with Alcaligenes latus DSMC 1124 on various carbon sources; G. Haage, et al. 14. Biosynthesis of polyhydroxyalkanoates and their regulation in Rhizobia; S. Povolo, S. Casella. 15. Polyhydroxyalkanoates production by activated sludge; L.S. Serafim, et al. 16. Controlled synthesis of biodegradable poly(ester)s; P.J. Dijkstra, et al. 17. Transglucosylation and hydrolysis activity of Gluconobacter oxydans dextran dextrinase with several donor and acceptor substrates; M. Naessens, E.J. Vandamme. 18. New highly functionalised starch derivatives; U. Heinze, et al. 19. Preparation of dextran-based macromolecular chelate sfor magnetic resonance angiography; M.G. Duarte, et al. 20. Fatty esterification of plant proteins; F. Ayhllon-Meixueiro, et al. 21. Chemical modification of wheat gluten; V. Tropini, et al. 22. Enzymatic crosslinking enhance film properties of deamidated gluten; C. Larre, et al. 23. Laccase - a useful enzyme for modification of biopolymers; K. Kruus, et al. Part 4: Material testing and analytical methods. 24. Biogradation of polymeric materials: An overview of polymeric materials; M. van der Zee. 25. Comparison of test systems for examination of the fermentability of biodegradable materials; J. Heerenklage, et al. 26. Structure-biodegradability relationship of polyesters; R.-J. Muller, et al. 27. Biodegradation of the blends of atactic poly[(R,S)-3-hydroxybutanoic acid] in natural environments; M. Rutkowska, et al. 28. Biodegradable matter bi attacked by trypsin; M. Rutkowska, et al. 29. Biodegradation of poly(vinyl alcohol)/poly(&bgr;-hydroxybutyrate) graft copolymers and relevant blends; E. C

Additional information

NLS9781441933690
9781441933690
1441933697
Biorelated Polymers: Sustainable Polymer Science and Technology by Emo Chiellini
New
Paperback
Springer-Verlag New York Inc.
2010-12-01
392
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Biorelated Polymers