Geometry of Riemann Surfaces by Frederick P. Gardiner (Brooklyn College, City University of New York)
Riemann surfaces is a thriving area of mathematics with applications to hyperbolic geometry, complex analysis, fractal geometry, conformal dynamics, discrete groups, geometric group theory, algebraic curves and their moduli, various kinds of deformation theory, coding, thermodynamic formalism, and topology of three-dimensional manifolds. This collection of articles, authored by leading authorities in the field, comprises 16 expository essays presenting original research and expert surveys of important topics related to Riemann surfaces and their geometry. It complements the body of recorded research presented in the primary literature by broadening, re-working and extending it in a more focused and less formal framework, and provides a valuable commentary on contemporary work in the subject. An introductory section sets the scene and provides sufficient background to allow graduate students and research workers from other related areas access to the field.