Prof. Joses research interests are in the areas of photonic glasses, femtosecond pulsed laser deposition and plasma implantation, planar waveguide devices on glass, silicon and polymer platforms, and photonic biosensors. The ultrafast laser plasma doping (ULPD) process in glass that he invented has been the core technology behind novel optoelectronic applications that he is developing. He is leading a large EPSRC-UK functional materials manufacturing research project for developing ULPD for application in advanced integrated photonics for optical data communication (www.seamatics.org). Glasses functionalised using ULPD are attractive for non-invasive biosensing, integrated photonics, anti-counterfeiting/printing in glass bottles (www.ultramatis.com) and toughening of glass for displays. A number of researchers and industrial partners are involved in these research and development activities of his group.
Mario F. S. Ferreira was born in Ovar, Portugal. He graduated in Physics from the University of Porto, Portugal, and he received the Ph.D. degree in Physics in 1992 and the Aggregation in Physics in 2006, both from the University of Aveiro, Portugal, where he is now a Professor at the Physics Department. Between 1990 and 1991 he was at the University of Essex, UK, performing experimental work on external cavity semiconductor lasers and nonlinear optical fiber amplifiers. His research interests have been concerned with the modelling and characterization of multi-section semiconductor lasers for coherent systems, quantum well lasers, optical fiber amplifiers and lasers, soliton propagation, nanophotonics, optical sensors, polarization and nonlinear effects in optical fibers. He is the leader of the Optics and Optoelectronics Group of the I3N Institute of Nanostructures, Nanomodelling and Nanofabrication. He has written approximately 350 scientific journal and conference publications, and several books, namely: "Optics and Photonics" (Lidel,2003, in Portuguese), "Topics of Mathematical Physics" (Editora Ciencia Moderna, 2017, Brazil, in Portuguese), "Optical Fibers: Technology, Communications and recent Advances" (Ed., NOVA Science Publishers, 2016), and "Nonlinear Effects in Optical Fibers" (John Wiley & Sons, OSA, 2011).