Cart
Free US shipping over $10
Proud to be B-Corp

Machine Learning Algorithms Giuseppe Bonaccorso

Machine Learning Algorithms By Giuseppe Bonaccorso

Machine Learning Algorithms by Giuseppe Bonaccorso


$39.61
Condition - Very Good
Only 1 left

Summary

Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. This book will act as an entry point for anyone who wants to make a career in Machine Learning. It covers algorithms like Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, and Feature engineering.

Faster Shipping

Get this product faster from our US warehouse

Machine Learning Algorithms Summary

Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition by Giuseppe Bonaccorso

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features
  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian regression
  • Study patterns and make predictions across various datasets
Book Description

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight.

This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you'll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture.

By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.

What you will learn
  • Study feature selection and the feature engineering process
  • Assess performance and error trade-offs for linear regression
  • Build a data model and understand how it works by using different types of algorithm
  • Learn to tune the parameters of Support Vector Machines (SVM)
  • Explore the concept of natural language processing (NLP) and recommendation systems
  • Create a machine learning architecture from scratch
Who this book is for

Machine Learning Algorithms is for you if you are a machine learning engineer, data engineer, or junior data scientist who wants to advance in the field of predictive analytics and machine learning. Familiarity with R and Python will be an added advantage for getting the best from this book.

About Giuseppe Bonaccorso

Giuseppe Bonaccorso is an experienced team leader/manager in AI, machine/deep learning solution design, management, and delivery. He got his MScEng in electronics in 2005 from the University of Catania, Italy, and continued his studies at the University of Rome Tor Vergata and the University of Essex, UK. His main interests include machine/deep learning, reinforcement learning, big data, bio-inspired adaptive systems, cryptocurrencies, and NLP.

Table of Contents

Table of Contents
  1. A Gentle Introduction to Machine Learning
  2. Important Elements in Machine Learning
  3. Feature Selection and Feature Engineering
  4. Regression Algorithms
  5. Linear Classification Algorithms
  6. Naive Bayes and Discriminant Analysis
  7. Support Vector Machines
  8. Decision Trees and Ensemble Learning
  9. Clustering Fundamentals
  10. Advanced Clustering
  11. Hierarchical Clustering
  12. Introducing Recommendation Systems
  13. Introducing Natural Language Processing
  14. Topic Modeling and Sentiment Analysis in NLP
  15. Introducing Neural Networks
  16. Advanced Deep Learning Models
  17. Creating a Machine Learning Architecture

Additional information

CIN1789347998VG
9781789347999
1789347998
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition by Giuseppe Bonaccorso
Used - Very Good
Paperback
Packt Publishing Limited
2018-08-30
522
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a used book - there is no escaping the fact it has been read by someone else and it will show signs of wear and previous use. Overall we expect it to be in very good condition, but if you are not entirely satisfied please get in touch with us

Customer Reviews - Machine Learning Algorithms