Topological Quantum Materials: Concepts, Models, and Phenomena by Grigory Tkachov
In topological quantum materials, quantum effects emerge at macroscopic scales and are robust to continuous changes in a material's state. This striking synergy between quantum and topological properties is of great interest for both fundamental research and emerging technologies, especially in the fields of electronics and quantum information. This edition of the book presents a wealth of topological quantum materials, bringing together burgeoning research from different areas: topological insulators, transition metal dichalcogenides, Weyl semimetals, and unconventional and topological superconductors.
The realization of the application potential of topological quantum materials requires understanding their properties at a fundamental level. This brings us back to the discovery of topological phases of matter, which earned the Nobel Prize in Physics in 2016. This book explores the connection between pioneering work on topological phases of matter and a flurry of activity that followed. The topics covered include the quantum anomalous and spin Hall effects, emergent axion electrodynamics and topological magnetoelectric effects, Weyl nodes and surface Fermi arcs, weak antilocalization, induced triplet superconductivity, Majorana fermion modes, and the fractional Josephson effect.