1 Tour d'Horizon.- 2 Early Version of Extended Thermodynamics and Kinetic Theory of Gases.- 1 Paradoxes of Heat Conduction and Shear Diffusion.- 1.1 Heuristic Derivation of the Laws of Fourier and Navier-Stokes.- 1.2 Parabolic Laws of Heat Conduction and Shear Diffusion.- 2 Paradox Removed.- 2.1 The Cattaneo Equation.- 2.2 Extended TIP.- 2.3 Finite Pulse Speeds in Extended TIP.- 2.4 Conclusion and Criticism.- 3 Kinetic Theory of Monatomic Gases.- 3.1 Boltzmann Equation and Moments.- 3.2 Equations of Balance for Moments.- 3.3 Balance of Entropy and Possible Equilibria.- 3.4 The Grad Distribution.- 3.5 Entropy and Entropy Flux in Grad's 13-Moment Theory.- 3.6 Phenomenological Equations derived from the Kinetic Theory.- 3.7 Pulse Speeds.- 3.8 Conclusions.- 3 Formal Structure of Extended Thermodynamics.- 1 Field Equations.- 1.1 Thermodynamic Processes and Principles of the Constitutive Theory.- 1.2 Universal Principles of the Constitutive Theory.- 2 Entropy Inequality and Symmetric Hyperbolic Systems.- 2.1 Exploitation of the Entropy Inequality.- 2.2 Symmetric Hyperbolic Field Equations.- 2.3 Discussion.- 2.4 Characteristic Speeds.- 3 Main Subsystems.- 3.1 Constraints on the Main Field.- 3.2 A Main Subsystem Implies an Entropy Inequality.- 3.3 A Main Subsystem Is Symmetric Hyperbolic.- 3.4 Characteristic Speeds of the Subsystems.- 3.5 Other Subsystems.- 4 Galilean Invariance.- 4.1 Tensors, Galilean Tensors, and Euclidean Tensors.- 4.2 Principle of Relativity.- 4.3 Exploitation of the Principle of Relativity for the Entropy Balance.- 4.4 Exploitation of the Principle of Relativity for the Field Equations.- 4.5 Field Equations for Internal Quantities.- 4.6 Galilei Invariance for Subsystems.- 4.7 Galilean Invariance and Entropy Principle.- 4.8 Explicit Velocity Dependence of Constitutive Quantities. The Determination of Ar.- 5 Thermodynamics of an Euler Fluid.- 5.1 The Euler Fluid.- 5.2 Lagrange Multipliers.- 5.3 Internal Lagrange Multipliers.- 5.4 Absolute Temperature.- 5.5 Vector Potential.- 5.6 Convexity.- 5.7 Characteristic Speed.- 5.8 Subsystems.- 5.9 Discussion.- 4 Extended Thermodynamics of Monatomic Gases.- 1 The Equations of Extended Thermodynamics of Monatomic Gases.- 1.1 Thermodynamic Processes.- 1.2 Discussion.- 1.3 Galilean Invariance. Convective and Nonconvective Fluxes.- 1.4 Euclidean Invariance. Inertial Effects.- 2 Constitutive Theory.- 2.1 Restrictive Principles.- 2.2 Exploitation of the Principle of Material Frame-Indifference.- 2.3 Exploitation of the Entropy Principle.- 2.4 Exploitation of the Requirement of Convexity and Causality.- 3 Field Equations and the Thermodynamic Limit.- 3.1 Field Equations.- 3.2 The Thermodynamic Limit.- 3.3 The Frame Dependence of the Heat Flux.- 3.4 Material Frame Indifference in Ordinary and Extended Thermodynamics.- 4 Thermal Equations of State and Ideal Gases.- 4.1 The Classical Ideal Gas.- 4.2 Comparison with the Kinetic Theory.- 4.3 Comparison with Extended TIP.- 4.4 Degenerate Ideal Gases.- 5 Thermodynamics of Mixtures of Euler Fluids.- 1 Ordinary Thermodynamics of Mixtures (TIP).- 1.1 Constitutive Equations.- 1.2 Paradox of Diffusion.- 2 Extended Thermodynamics of Mixtures of Euler Fluids.- 2.1 Balance Equations.- 2.2 Thermodynamic Processes.- 2.3 Constitutive Theory.- 2.4 Summary of Results.- 2.5 Wave Propagation in a Nonreacting Binary Mixture.- 2.6 Landau Equations. First and Second Sound in He II.- 3 Ordinary and Extended Thermodynamics of Mixtures.- 3.1 The Laws of Fick and Fourier in Extended Thermodynamics.- 3.2 Onsager Relations.- 3.3 Inertial Contribution to the Laws of Diffusion.- 6 Relativistic Thermodynamics.- 1 Balance Equations and Constitutive Restrictions.- 1.1 Thermodynamic Processes.- 1.2 Principles of the Constitutive Theory.- 2 Constitutive Theory.- 2.1 Scope and Structure.- 2.2 Lagrange Multipliers and the Vector Potential. Step i.- 2.3 Principle of Relativity and Linear Representations. Step ii.- 2.4 Stress Deviator, Heat Flux, and Dynamic Pressure. Step iii.- 2.5 Fugacity and Absolute Temperature. Step iv.- 2.6 Linear Relations Between Lagrange Multipliers and n,UA, t(AB),?,qA,e. Step v.- 2.7 The Linear Flux Tensor. Step vi.- 2.8 The Entropy Flux Vector. Step vii.- 2.9 Residual Inequality Step viii.- 2.10 Causality and Convexity. Step ix.- 2.11 Summary of Results. Step x.- 3 Identification of Viscosities and Heat-Conductivity.- 3.1 Extended Thermodynamics and Ordinary Thermodynamics.- 3.2 Transition from Extended to Ordinary Thermodynamics.- 4 Specific Results for Relativistic and Degenerate Gases.- 4.1 Equilibrium Distribution Function.- 4.2 The Degenerate Relativistic Gas.- 4.3 Nondegenerate Relativistic Gas.- 4.4 Degenerate Nonrelativistic Gas.- 4.5 Nondegenerate Nonrelativistic Gas.- 4.6 Strongly Degenerate Relativistic Fermi Gas.- 4.7 A Remark on the Strongly Degenerate Relativistic Bose Gas.- 4.8 Equilibrium Properties of an Ultrarelativistic Gas.- 5 An Application: The Mass Limit of a White Dwarf.- 6 The Relativistic Kinetic Theory for Nondegenerate Gases.- 6.1 Boltzmann-Chernikov Equation.- 6.2 Equations of Transfer.- 6.3 Equations of Balance for Particle Number, Energy-Momentum, Fluxes, and Entropy.- 6.4 Maxwell-Juttner Distribution, Equilibrium Properties.- 6.5 Possible Thermodynamic Fields in Equilibrium.- 7 The Nonrelativistic Limit of Relativistic Thermodynamics.- 7.1 The Problem.- 7.2 Variables and Constitutive Quantities.- 7.3 The Dynamic Pressure.- 7.4 Order of Magnitude of the Dynamic Pressure.- 7 Extended Thermodynamics of Reacting Mixtures.- 1 Motivation, Results, and Discussion.- 1.1 Motivation.- 1.2 Results.- 1.3 Discussion.- 2 Fields.- 2.1 A Conventional Choice.- 2.2 Absolute Temperature, Fugacities, and Chemical Affinity.- 2.3 Summary of Fields.- 3 Field Equation.- 3.1 Balance Laws.- 3.2 Constitutive Theory.- 3.3 Principle of Relativity.- 4 Entropy Inequality.- 4.1 Lagrange Multipliers.- 4.2 Exploitation.- 5 Nonrelativistic Limit.- 5.1 Discussion.- 5.2 Dynamic Pressure and Bulk Viscosity.- 5.3 Thermal Conductivity and Viscosity.- 8 Waves in Extended Thermodynamics.- 1 Hyperbolicity and Symmetric Hyperbolic Systems.- 1.1 Hyperbolicity in the t-direction.- 1.2 Symmetric Hyperbolic Systems.- 2 Linear Waves.- 2.1 Plane Harmonic Waves, the Dispersion Relation.- 2.2 The High-Frequency Limit.- 2.3 Higher-Order Terms.- 2.4 Linear Waves in Extended Thermodynamics.- 3 Hyperbolicity and Nonlinear Waves..- 3.1 The Characteristic Polynomial.- 3.2 Region of Hyperbolicity.- 4 Acceleration Waves.- 4.1 Amplitude of Discontinuity Waves.- 4.2 Growth and Decay.- 4.3 Evolution of Amplitude in Extended Thermodynamics.- 4.4 Acceleration Waves in Relativistic Extended Thermodynamics.- 5 Weak Solutions and Shock Waves.- 5.1 Weak Solutions.- 5.2 Rankine-Hugoniot Equations.- 5.3 Shocks in Extended Thermodynamics.- 5.4 Selection Rules for Physical Shocks. The Entropy Growth Condition..- 5.5 Selection Rules for Physical Shocks. The Lax Conditions..- 5.6 Lax Condition in Extended Thermodynamics.- 9 Extended Thermodynamics of Moments.- 1 Field Equations for Moments.- 1.1 Densities, Fluxes, and Productions as Moments of the Phase Density.- 1.2 Extended Thermodynamics of Moments.- 1.3 Specific Phase Densities.- 1.4 Field Equations for ?? and Equations for u? near Equilibrium.- 1.5 The Case N=3: An Illustration.- 1.6 Field Equations for n=13, 14, 20, 21, 26, 35.- 2 Characteristic Speeds.- 2.1 Field Equations near Equilibrium.- 2.2 Pulse Speed.- 2.3 Discussion.- 2.4 The Relativistic Case; Speeds Smaller than c.- 3 Mean Eigenfunctions.- 3.1 Eigenfunctions and Eigenvalues.- 3.2 Mean Eigenfunctions as the Main Field.- 3.3 Linear Field Equations for the Mean Eigenfunctions.- 4 Maximization of Entropy.- 4.1 Maximizing Entropy.- 4.2 Maximizing Entropy is Equivalent to Extended Thermodynamics of Moments.- 10 Extended Thermodynamics and Light Scattering.- 1 Basic Electrodynamics.- 1.1 Distant Field Approximation.- 1.2 Incident Plane Harmonic Wave.- 2 A Modicum of Fluctuation Theory.- 2.1 Expectation Values.- 2.2 Temporal Evolution of a Fluctuation.- 2.3 Autocorrelation of ES(R, t).- 3 Measuring the Spectral Density.- 3.1 Signal and Spectral Density.- 3.2 Measured Data and Their Dependence on Pressure.- 4 Navier-Stokes-Fourier Fluid.- 4.1 Dynamic Form Factor.- 4.2 An Alternative Form of the Dynamic Form Factor. Also: An Approximate Form for Forward Scattering.- 4.3 Graphical Representation of the Dynamic Form Factor for a Monatomic Ideal Gas.- 4.4 Comparison with Experimental Data.- 4.5 Autocorrelation.- 4.6 Heat and Sound Modes.- 5 Extended Thermodynamics.- 5.1 Introducing Extended Thermodynamics. The Case of 13 Moments.- 5.2 Dynamic Form Factors for n=20, 35, 84.- 5.3 Heat and Sound Modes in Extended Thermodynamics.- 5.4 Higher Moments by Method of Eigenfunctions.- 5.5 Dynamic Form Factors for Many Moments.- 5.6 Evaluation of Moment Theories.- 5.7 Characteristic speeds.- 5.8 More Experimental and Theoretical Evidence.- 6 Extrapolation of S(q, ?) for y ? 0.- 6.1 The Problem.- 6.2 The Boltzmann Equation in the Krook Approximation.- 6.3 The Dynamic Form Factor S(q,?); General Formula.- 6.4 Fluctuations in Phase Space.- 6.5 The Dynamic Form Factor S(q,?); Specific Form.- 6.6 Discussion.- 11 Testing Extended Thermodynamics by Sound.- 1 Basic Acoustics.- 1.1 How the Acoustic Resonator Measures Phase Speeds in Principle.- 1.2 Piezoelectric Transducer and the Mechanical Impedance.- 1.3 External Mechanical Impedance and Wavelength.- 1.4 Difficulties with Many Modes and Damping.- 2 Dispersion Relations.- 2.1 Navier-Stokes-Fourier Theory.- 2.2 Extended Thermodynamics of 13 Fields.- 2.3 Extended Thermodynamics with Many Variables.- 2.4 Conclusion and Estimate.- 3 Maximum Speed.- 3.1 Modes of Least Damping.- 3.2 The Maximum Speed.- 12 Structure of Shock Waves.- 1 Experimental Evidence.- 2 Review of Previous Work.- 2.1 Rankine-Hugoniot Relations.- 2.2 Becker's Solutions.- 2.3 Singular Perturbation Analysis.- 2.4 Numerical Solution by Gilbarg and Paolucci.- 2.5 The 13-Moment Theory by Grad.- 2.6 The 13-Moment Theory by Anile & Majorana.- 2.7 Criticism of Moment Methods for Shock Structure.- 2.8 Alternative Methods for Shock Structure Calculations.- 3 Preliminaries on Singular Points and Characteristic Speeds.- 3.1 Field Equations and Boundary Values.- 3.2 Singular Points and Stationary Points.- 3.3 The Singularities D = 0.- 3.4 Regular and Irregular Singularities.- 4 Numerical Calculation of the Shock Structure.- 4.1 Initial and Boundary Value Problems.- 4.2 Algorithm for the Initial Value Problem.- 4.3 Algorithm for the Boundary Value Problem.- 4.4 The 13-Moment Case.- 4.5 The 14-Moment Case.- 4.6 The 21-Moment Case.- 5 Conclusion.- 6 Addendum on Initial Value Problem for 13 Moments.- 7 Quantitative Results and Conclusions.- 13 Extended Thermodynamics of Radiation.- 1 Structure of Extended Thermodynamics of Photons.- 1.1 Energy and Momentum of Individual Photons.- 1.2 Radiative Transfer Equation.- 1.3 Moments and Moment Equations. The Closure Problem.- 1.4 Entropy and Maximization of Entropy.- 1.5 Closure.- 2 Equilibrium.- 2.1 The First Few Moments.- 2.2 Equilibrium of Radiation with Matter.- 3 Near Equilibrium.- 3.1 Phase Density in Near-Equilibrium.- 3.2 Approximate Lagrange Multipliers.- 4 Field Equations.- 4.1 Closure for Moments.- 4.2 Closure for Productions.- 4.3 The Hierarchies of Field Equations.- 4.4 Absorption and Emission of Bremsstrahlung. Thomson Scattering..- 5 Local Radiative Equilibrium.- 5.1 The Rosseland Mean Value of the Absorption Coefficient.- 5.2 Maxwell Iteration.- 5.3 Conclusion.- 6 Compression of Radiation.- 6.1 A Thought Experiment.- 6.2 Solution of the Radiative Transfer Equation.- 6.3 Solution of Moment Equations.- 6.4 Conclusion.- 7 Penetration of a Beam of Radiation into Matter.- 7.1 Field Equations.- 7.2 Characteristic Speeds and Amplitudes of the Propagating Beam.- 7.3 Plane Harmonic Waves and Dispersion Relation (General).- 7.4 Intense Absorption. The Damped Wave Limit.- 7.5 Intense Scattering. The Diffusion Limit.- 7.6 General Case and a Simple Example.- 8 Radiative Entropy in Gray Bodies.- 8.1 Photon Gas and an Eulerian Fluid.- 8.2 Equilibrium of Radiation with Matter at Rest.- 8.3 Entropy Production due to Matter-Photon Interaction.- 8.4 Thermodynamic Fields of Radiation in the Neighborhood of a Spherical Source.- 8.5 Absorption of Radiation from a Spherical Source in an Eulerian Fluid at Temperature T.- 8.6 Entropic Production for Incident Rays.- 8.7 Pseudo-Temperature.- 8.8 Entropy Flux and Entropy.- 14 Extended Thermodynamics of Phonons.- 1 Phonon Transfer Equation.- 1.1 Energy and Momentum of Phonons.- 1.2 Phonon Transfer Equation, Energy and Momentum.- 1.3 The Phase Density of Production.- 2 Moments and Moment Equations.- 2.1 Moments and their Equilibrium Values.- 2.2 Moment Equations and Conservation Laws.- 2.3 Closure Problem.- 3 The Heat Pulse Experiment.- 3.1 Experimental Results and One-Dimensional Equations.- 3.2 Ballistic Phonons.- 3.3 Second Sound in Its Purest Form.- 3.4 Damped Second Sound and Pure Diffusion.- 3.5 The 9-Field Theory of Extended Thermodynamics.- 3.6 Heat Pulses. Numerical Solutions.- 15 Thermodynamics of Metal Electrons.- 1 Equations of Balance.- 1.1 Kinetic Theory of Metal Electrons.- 1.2 Equations of Balance of Mass, Momentum, Energy, and Energy Flux.- 1.3 Entropy Principle and Phase Density Close to Equilibrium.- 2 Extended Thermodynamics and Kinetic Theory.- 2.1 Toward Extended Thermodynamics of Electrons in Metals.- 2.2 A Convenient Shortcut via the Kinetic Theory of Electrons.- 2.3 Characteristic Speeds.- 2.4 The Laws of Ohm and Fourier.- 2.5 Hall and Coriolis Effects.- 2.6 Discussion.- 16 Viscoelastic Fluids.- 1 Viscoelastic Fluids of Second Grade.- 1.1 The Stress of a Second Grade Fluid.- 1.2 Ordinary Thermodynamics of Second Grade Fluids.- 1.3 Discussion.- 2 Rate-Type versus Differential-Type Constitutive Equations.- 2.1 Cattaneo and Stability.- 2.2 Viscoelasticity and Stability.- 2.3 Conclusion.- 3 Toward Extended Thermodynamics of Viscoelasticity.- 3.1 Fields and Field Equations.- 3.2 Incompressible Adiabatic Fluid.- 3.3 Entropy Inequality.- 3.4 Partial Exploitation of the Entropy Inequality.- 3.5 Evaluation.- 3.6 Criticism and Outlook.