1 Introduction to Cell Growth: Growth in Size and DNA Replication.- A. Introduction.- B. Doubling of Size in Growing Cells.- C. Replication of DNA in Growing Cells.- D. Independence of Signal to Grow in Size from Signal to Replicate DNA.- E. Mechanism of Action of Growth Factors.- References.- 2 Survival and Growth Requirements of Nontransformed Cells..- A. Definitions.- I. Normal, Nontransformed, and Transformed Cells.- II. Survival and Survival Requirements.- III. Cell Cycle, Growth, Division, Multiplication, and Proliferation.- IV. Nutrient, Growth Requirement, Growth Factor, Mitogen, and Hormone.- B. Assay Systems for the Measurement of Growth Requirements.- I. Background.- II. Inadequacy for Nontransformed Cells of Classic Assay Systems.- 1. Evolutionary Adaptation of Permanent Lines.- 2. Role of Serum in the Multiplication of Nontransformed Cells.- 3. Problems Awaiting Solution for Nontransformed Cells.- III. Holistic Approach to Cellular Growth Requirements.- IV. Development of Specific Assays for Individual Growth Requirements.- 1. Background Media Lacking a Single Growth-Promoting Substance.- 2. First Limiting Factor.- 3. Replaceable Requirements.- 4. Sequential Depletion.- 5. Systematic Testing of Suspected Growth-Promoting Substances.- V. Types of Measurement and Analysis of Data.- 1. Short-Term Vs Long-Term Multiplication.- 2. Sparse Vs Dense Cultures.- 3. DNA Synthesis Vs Increase in Cell Number.- 4. Analysis of Data Based on Total Multiplication.- 5. Analysis Based on Rate of Multiplication.- 6. Multiplication Rate Kinetics.- VI. Systematic Analysis of Growth Requirements.- C. Requirements for Survival and Growth of Nontransformed Cells.- I. Transformed Vs Nontransformed Cells.- II. Requirements Related to Subculturing and Cellular Attachment.- 1. Anchorage Dependence.- 2. Neutralization of the Dispersing Agent.- 3. Low Temperature Trypsinization.- 4. Attachment and Spreading Factors.- 5. The Culture Surface.- 6. Artificial Substitutes for the Basement Membrane.- III. Inorganic Ions, Physical Chemistry, and Cell Physiology.- 1. Bicarbonate, Carbon Dioxide, pH, and Buffering.- 2. Sodium, Chloride, Osmolarity, and Humidification of Incubators.- 3. Potassium and Na+: K+ Ratios.- 4. Calcium, Magnesium, and Regulatory Roles of Divalent Cations.- 5. Phosphate.- 6. Other Physicochemical Parameters.- IV. Qualitative Nutrient Requirements.- 1. Components of Eagle's Minimum Essential Medium.- 2. Other Amino Acids.- 3. Other Vitamins.- 4. Carbohydrates and Intermediates of Energy Metabolism.- 5. Nucleic Acid Components.- 6. Other Organic Nutrients.- 7. Inorganic Trace Elements.- V. Quantitative Optimization of Synthetic Media.- 1. Species and Cell Type Individuality of Quantitative Requirements.- 2. Reduction of Requirements for Serum and Growth Factors.- VI. Lipids and Related Substances.- 1. Fatty Acids.- 2. Prostaglandins.- 3. Phospholipids.- 4. Cholesterol.- 5. Synthetic Media.- VII. Hormones, Hormone-Like Growth Factors, and Carrier Proteins.- 1. Hormones.- 2. Growth Factors.- 3. Replacement of Serum with Hormones and Growth Factors.- 4. Individuality of Cellular Requirements.- 5. Nontransformed Cells.- 6. Relationship to In Vivo Growth Requirements.- VIII. Special Requirements Related to Cellular Density.- 1. Requirements for Clonal Growth.- 2. Requirements for Multiplication of Dense Cultures.- IX. Regulatory Interactions and Artificial Stimulation of Multiplication.- 1. Borderline Toxicity.- 2. Proteolytic Enzymes.- 3. Tumor Promoters.- 4. Inorganic Ions.- 5. Cyclic Nucleotides.- 6. Defining a Genuine Growth Requirement.- D. Requirements for Survival of Nontransformed Cells Without Proliferation.- I. Early Studies.- II. Survival Factor.- III. Elimination of the Need for Survival Factor.- IV. Nutrients and Survival.- V. Differences in Survival Between Nontransformed and Transformed Cells.- E. Future Studies of the Growth and Survival Requirements of Nontransformed Cells.- I. Integration of New Findings.- II. Questions Remaining to be Solved After Development Synthetic Media.- III. Magnitude of Remaining Work.- IV. Selective Allocation of Resources.- F. Summary and Conclusions.- G. Note Added in Proof.- References.- 3 Epidermal Growth Factor.- A. Introduction.- B. Chemical and Physical properties of EGF.- I. Mouse EGF.- 1. Isolation.- 2. Chemical and Physical Properties.- 3. Derivatives.- a) EGF-2.- b) EGF-5.- c) Cyanogen Bromide EGF.- 4. High Molecular Weight Mouse EGF.- II. Human EGF.- 1. Identification and Isolation.- 2. Chemical and Physical Properties.- 3. Relationship of Human EGF and Urogastrone.- III. Rat EGF.- C. Physiological Aspects of EGF.- I. Concentration in Body Fluids.- 1. Mouse EGF.- 2. Human EGF.- II. Localization.- 1. Mouse EGF.- 2. Human EGF.- III. Control of Submaxillary Gland Content of Mouse EGF.- IV. Secretion of Mouse EGF from the Submaxillary Gland.- V. Factors Affecting Levels of Human EGF.- D. Biological Activities of EGF In Vivo.- I. Skin.- II. Corneal Epithelium.- III. Respiratory Epithelium.- IV. Gastrointestinal Tract.- V. Liver.- E. Organ Culture Studies of EGF.- I. Skin.- II. Other Tissues.- 1. Cornea.- 2. Palate.- 3. Bone.- F. Cell Culture Studies of EGF.- I. Cell Nutrition.- II. Types of Cells Affected by EGF.- III. EGF and the Growth of Cell Populations.- IV. Components of the Mitogenic Response.- 1. Rapid Biological Responses at the Membrane.- a) Uridine Uptake.- b) Sugar Transport.- c) Cation Fluxes.- d) Putrescine Transport.- e) Alanine Transport.- f) Membrane Ruffling and Macropinocytosis.- g) Other Membrane Responses.- 2. Responses of EGF Occurring in the Cytoplasm.- a) Activation of Glycolysis.- b) Synthesis of Extracellular Macromolecules.- c) Activation of RNA and Protein Synthesis.- d) Activation of Ornithine Decarboxylase.- e) Protein Phosphorylation.- 3. Stimulation of DNA Synthesis.- V. Responses Not Related to Mitogenesis.- G. Growth Factor: Receptor Interactions.- I. Receptors for EGF.- II. Internalization and Degradation of EGF.- 1. Biochemical Evidence.- 2. Morphological Evidence.- III. Internalization of the Receptor.- 1. Indirect Evidence.- 2. Chemical Evidence.- 3. Morphological Evidence.- IV. Recovery of Receptor Activity.- H. Relationship of EGF Binding and Metabolism to Biological Activity.- I. Rapid Changes in Cell Physiology.- II. Stimulation of DNA Synthesis.- I. Other Controls of Receptor Activity.- I. Transforming Agents.- II. Tumor Promoters.- III. Differentiation.- IV. Lectins and Glycoprotein Metabolism.- V. Glucocorticoids.- VI. Modulation of Protein Synthesis.- K. A Biochemical Response to EGF in Subcellular Systems.- L. Prospectus.- References.- 4 The Platelet-Derived Growth Factor.- A. Serum, the Platelet-Derived Growth Factor, and Cell Culture.- B. The Platelet.- C. Platelet-Structure and function.- D. The Gray Platelet Syndrome.- E. The Megakaryocyte as the Source of Platelet-Derived Growth Factor.- F. Purification and Characterization of the Platelet-Derived Growth Factor.- G. The Spectrum of Cell Response.- H. Control of Cell Proliferation by Platelet-Derived Growth Factor and Plasma.- I. The Role of Plasma.- K. Endocytosis and the Platelet-Derived Growth Factor.- L. Modulation of Receptors for Epidermal Growth Factor by Platelet-Derived Growth Factor.- M. Lipid Metabolism and the Platelet-Derived Growth Factor.- N. Platelets and Cell Proliferation In Vivo.- O. Summary.- References.- 5 Somatomedin: Physiological Control and Effects on Cell Proliferation.- A. Introduction.- B. Assay Systems Used to Measure Somatomedins.- I. Biological Assays.- II. Radioreceptor Assays.- III. Protein Binding Assays.- IV. Radioimmunoassays.- V. Standards Used for the Quantitation of Somatomedin Activity.- C. Isolation and Properties of the Individual Somatomedins.- I. Basic Somatomedins.- 1. Somatomedin-C (SM-C).- 2. Insulin-Like Growth Factor I (IGF-I).- 3. Somatomedin in Other Species.- II. Neutral Somatomedins.- 1. Insulin-Like Growth Factor II (IGF-II).- 2. Somatomedin-A (SM-A).- 3. Multiplication Stimulating Activity (MSA).- D. Production of the Somatomedins.- I. Somatomedin Production by Organs and Tissue Slices.- II. Somatomedin Production by Monolayer Cultures.- E. Molecular Size and Transport of Somatomedins in Plasma: The Somatomedin Binding Proteins.- F. Control of Somatomedin Concentrations in Blood.- I. Blood Concentrations in Normal Individuals.- 1. Effect of Age.- 2. Effect of Hormonal Status.- a) Growth Hormone.- b) Prolactin and Placentral Lactogens.- c) Thyroid Hormone.- d) Cortisol.- e) Estrogens.- 3. Effect of Pregnancy.- 4. Effect of Nutritional Status.- G. In Vitro Biological Effects of the Somatomedins.- I. Whole Tissue Effects.- 1. Cartilage.- 2. Muscle.- 3. Adipose Tissue.- II. Correlation Between Biological Responses and Receptor Interactions.- III. Stimulation of DNA Synthesis and Cell Growth in Tissue Culture.- 1. Range of Responsive Cell Types.- 2. Interaction Between Somatomedin and Other Growth Factors in the Cell Cycle.- 3. Production of Somatomedin-Like Peptides by Cultured Cells and Their Role in Cellular Proliferation.- H. In Vivo Actions of the Somatomedins.- References.- 6 Glucocorticoid Modulation of Cell Proliferation.- A. Introduction.- I. Historical Perspective.- II. Glucocorticoids: General Mechanisms of Action.- B. Hormone Responsiveness by Cell Cultures.- I. Various Vertebrate Species.- II. Human Cell Lines.- III. Mouse and Rat Cell Lines.- C. Permissive Effects of Glucocorticoids.- I. Glucocorticoid Modulation of Heterologous Receptors.- II. Glucocorticoid Effects on Other Factors Implicated in the Regulation of Cell Growth.- D. Glucocorticoid Induction of Growth Factors in Normal Human Cells In Vitro.- E. Summary and Conclusions.- References.- 7 Proteases as Growth Factors.- A. Introduction.- B. Stimulation of DNA Synthesis and Cell Division by Proteases.- I. Cell-Protease Combinations Which Yield Mitogenic Stimulation.- II. Involvement of Proteases in the Action of Other Growth Factors.- III. Protease Activity of Other Growth Factors.- C. Mechanisms of Protease-Stimulated Cell Proliferation.- I. Mitogenic Stimulation by Proteases Under Serum-Free Chemically Defined Conditions.- II. Requirement of Proteolytic Activity.- III. Sufficiency of Cell Surface Action.- IV. Cell Surface Receptors for Thrombin.- V. Cleavage of Cell Surface Proteins and Stimulation of Cell Division.- VI. Perspectives and Future Studies.- D. Possible Role of Protease-Stimulated Cell Proliferation in Physiological Processes.- E. Conclusions.- References.- 8 Nerve Growth Factor.- A. Discovery of NGF and Its Early History.- B. Multiple Molecular Forms of NGF.- I. Cohen's NGF.- II. 7S NGF.- III. 2.5S NGF.- IV. Snake Venom NGF.- V. What is the Naturally Occurring Form of NGF in the Mouse Salivary Gland?.- C. The NGF-Zymogen and Its Enzymic Properties.- I. Autocatalytic Self-activation.- II. Regulation of the Autoactivation Reaction.- III. Activation of Plasminogen by NGF.- D. Role of the Submandibular Gland in Secretion of NGF.- E. Secretion of NGF by Cells in Culture.- F. Biological Effects of NGF Related to the Nervous System and Neural Crest Derivatives.- I. Sympathetic and Sensory Neurons.- II. Adrenal Cells.- III. Pheochromocytoma Cells.- IV. Central Nervous System.- G. Retrograde Transport and Trophic Effects.- H. Cellular NGF Receptors.- I. Other Biological Actions of the 116000 Molecular Weight NGF.- I. Effect of Saliva and NGF on Wounds.- II. Effect of Saliva and NGF on Stress Ulcers.- K. Summary and Perspectives.- References.- 9 The Role of Cold Insoluble Globulin (Plasma Fibronectin) in Cell Adhesion In Vitro.- A. Introduction.- B. Cold Insoluble Globulin and Fibronectin: Terminology.- C. The Role of CIG in Cell Adhesion to Tissue Culture Dishes.- I. Historical Overview.- II. Identification of CIG as the Serum Factor in Cell Attachment and Spreading.- III. Analysis of CIG Adsorption to Tissue Culture Dishes.- IV. Technical Comments on CIG Purification.- V. Other Components Which Promote Cell Spreading.- D. The Role of CIG in Cell Adhesion to Surfaces Other than Tissue Culture Dishes.- I. Bacteriological Dishes.- II. CIG and the Adhesion of Cells to Collagen.- III. CIG and the Adhesion of Cells to Fibrin and Fibrinogen.- E. Cell Spreading in the Absence of Serum or CIG.- F. Mechanism of Action of CIG.- I. Ligand Receptor Hypothesis.- II. Cooperativity and CIG Binding.- III. Interaction of Multimeric CIG with BHK Cells.- IV. Inhibition of Cell Adhesion with Gangliosides.- V. Isolation of Cell-Substratum Adhesion Sites.- VI. Studies on the Active Site(s) of CIG.- G. Summary.- References.- 10 Membrane-Derived Inhibitory Factors.- A. Introduction and Perspective.- B. Some Properties of Membrane-Derived Inhibitory Factors.- C. Cell Cycle-Dependent Inhibition of DNA Synthesis and Cell Division.- D. The Role of Glycosylation in the Control of DNA Synthesis.- E. Inhibition of DNA Synthesis in Virus-Transformed Cells.- F. Surface Membranes and Nutrient Uptake.- G. Prospects and Conclusions.- References.- 11 Diffusible Factors in Tissue Cultures.- A. Introduction.- B. Metabolic Cooperation.- C. Diffusion of Stimulating Factors.- I. The Feeder Effect.- II. Multiplication-Stimulating Activity from Rat Cells.- 1. Purification of MSA.- 2. Metabolic Effects of MSA.- 3. Cell Surface Receptors.- D. Diffusion of Inhibitory Factors.- I. Problem of Density-Dependent Inhibition.- 1. Mechanism of DDI.- II. Inhibitory Factors Released by Cells.- 1. Inhibitors from 3T3 Cells.- 2. Inhibitors from WI38 Cells.- 3. Inhibitors from Chinese Hamster Fibroblasts.- 4. Inhibitors from a Melanocytic Line.- 5. Inhibitors from BSC1 Cells.- E. Diffusion of Transforming Factors.- I. Diffusion of Protein Factors Which Enhance Malignant Transformation.- II. Metabolic Interaction Which Enhances the Chemical Transformation of Cells.- F. Concluding Remarks.- References.- 12 Hemopoietic Colony Stimulating Factors.- A. Introduction and Terminology.- B. Culture of Hemopoietic Colonies in Semisolid Medium.- C. Detection and Assay of Colony-Stimulating Factors.- D. Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF).- I. Sites of Production of GM-CSF.- II. Purification and Chemical Nature of GM-CSF.- III. Mechanisms of Action of GM-CSF.- IV. Factors Modifying Responsiveness to GM-CSF.- V. Factors Influencing GM-CSF Production and Levels.- 1. Steady State Production of GM-CSF.- 2. Increased GM-CSF Production in Response to Infections and Bacterial Products.- 3. Increased GM-CSF Production Following Lymphocyte Stimulation.- 4. Other Situations Modifying GM-CSF Levels.- VI. Role of GM-CSF In Vivo.- E. Eosinophil Colony Stimulating Factor (EO-CSF).- F. Megakaryocyte Colony Stimulating Factor (MEG-CSF).- G. Erythropoietin and Erythroid Colony Stimulating Factor.- H. Final Comments.- References.- 13 Inhibition of Hematopoietic Cell Proliferation.- A. Introduction.- B. Hematopoietic Techniques and Nomenclature.- I. Pluripotent Stem Cells.- II. Unipotent (Committed) Stem Cells.- C. Inhibitors of Hematopoiesis.- I. Physiologic Inhibitors of Hematopoiesis.- 1. Prostaglandins.- 2. Neutrophil-Derived Colony Inhibitory Factor.- 3. Chalones.- 4. Serum Inhibitors.- II. Inhibitors of Hematopoiesis in Disease.- 1. Leukemic Inhibitors.- 2. Immune Suppression of Hematopoiesis.- a) Humoral Inhibitors.- b) Cell-Mediated Immune Suppression.- D. Summary and Conclusions.- References.- 14 Inducers and Inhibitors of Leukemic Cell Differentiation in Culture.- A. Introduction.- B. Leukemic Cell Lines Utilized for Differentiation Studies in Culture.- C. Inducers of Differentiation in Culture.- D. Mechanism of Action of Inducers of Differentiation.- E. Clonal Analysis of the Induction of Differentiation.- F. Inducers of Leukemic Cell Differentiation and the Cell Cycle.- G. Inhibitors of Differentiation.- H. Inducers of Differentiation and Treatment of Leukemias In Vivo.- References.- 15 Angiogenesis Factor(s).- A. Introduction.- B. Morphogenesis of Vascular Networks.- C. Assays for Angiogenesis.- I. Rabbit Eye.- II. Chick Embryo Chorioallantoic Membrane.- III. Hamster Cheek Pouch.- IV. Dorsal Air Sac and Intracutaneous Injections.- V. Endothelial Cell Culture.- VI. Renal Assay.- D. Induction of Angiogenesis.- I. Angiogenesis by Normal Tissues.- II. Angiogenesis by Normal Cells.- III. Angiogenesis by Neoplastic Tissues and Cells.- E. Isolation and Characterization of Angiogenesis Factor(s).- I. Fractionation of Fluids or Tissues with Angiogenic Capacity.- II. Angiogenic Capacity of Growth Factors and Prostaglandins.- F. Physiologic Significance of Angiogenesis Factor(s).- I. Angiogenesis as a Marker for Neoplastic Transformation.- II. Antiangiogenesis.- G. Concluding Remarks.- References.- 16 Growth of Human Tumors in Culture.- A. General Introduction.- I. The Ideal System.- II. Current State of Technology for Culturing Tumor Cells.- III. Identifying Cell Types in Culture.- 1. Endothelial Cells.- 2. Epithelial Cells.- 3. Fibroblastoid Cells.- IV. Identifying Tumor Vs Nonmalignant Cells in Culture.- V. Identifying Cell-to-Cell Contamination in Culture.- B. Specific Systems.- I. Carcinomas.- 1. Mammary Gland.- 2. Bladder and Kidney.- 3. Colon.- 4. Prostate.- II. Other Malignancies.- 1. Melanomas.- 2. Gliomas.- 3. Sarcomas.- C. Summary.- References.- 17 The Chalones.- A. Introduction.- I. Definition and Properties.- II. Limitations of This Chapter.- III. The Name.- IV. Theoretical and Biological Background.- 1. Theory.- 2. Biology.- B. Sources of Chalones: Methods to Extract, Purify and Measure Their Effects.- I. Sources of Chalones.- II. Methods to Assess Chalone-Mediated Growth Inhibition.- III. Methods to Purify and Characterize Chalones.- C. Some Chalone Properties.- I. Tissue or Cell Line Specificity or Preference.- II. Species Non-specificity.- III. Sites of Attack in the Cell Cycle.- IV. Reversibility and Turnover Time of Chalones.- V. Chalones and Stimulators of Cell Proliferation.- VI. Dose-Response Relationship.- VII. Chemical Composition.- D. Mechanisms of Action.- I. General Considerations.- II. Do Chalones Primarily Inhibit Proliferation, or Do They Promote Maturation?.- III. Possible Relationship to Hormones and Cyclic AMP.- IV. Do Chalones Act via the Cell Membranes?.- E. Chalones and Malignancy.- I. General Considerations.- II. Chalones in Malignant Tumors.- III. Chalones and Carcinogenesis.- F. Possible Practical Uses of Chalones.- I. For Diagnostic Purposes.- II. For Therapeutic Purposes.- 1. Diseases with Benign Increased Cell Proliferation.- 2. Treatment of Cancer.- 3. Immunosuppression.- 4. A Male Antifertility Drug.- G. The Various Chalones.- I. The Epidermal Chalones.- 1. The Epidermis.- 2. The Epidermal G2 Chalone.- 3. The Epidermal G1 Chalone.- 4. Conclusions About Epidermal Chalones.- II. Chalones from Epidermal Derivatives.- 1. The Mammary Gland Chalone?.- 2. Sebaceous Gland, Sweat Gland and Hair Follicle Chalones?.- a) Sebaceous Gland.- b) Sweat Gland (Eccrine) Chalone.- c) Hair Root Chalone.- III. The Melanocyte Chalone (?).- IV. Chalones in the Cells of the Red Bone Marrow, Blood and Lymphoid System.- 1. The Granulocyte Chalone.- 2. The Erythrocyte Chalone.- 3. The Lymphocyte Chalone(s).- 4. The Monocyte (Macrophage) Chalone (?).- 5. The Platelet Chalone (?).- 6. The Stem Cell Chalone (?).- 7. Conclusion About Blood Cell Chalones.- V. Chalones in the Gastro-intestinal Tract.- 1. Salivary Gland Chalone (?).- 2. Oral Mucosa, Oesophageal and Forestomach Chalone.- 3. Gastric Chalone (?).- 4. Small Intestinal Chalone.- 5. A Colon Chalone?.- VI. The Liver Chalones.- VII. Kidney Chalones (?).- VIII. Chalones in the Male Reproductive Organs (?).- 1. Testicular Chalone.- 2. A Chalone in the Seminal Vesicle?.- 3. A Prostatic Chalone?.- IX. Ascites Tumour Cell Chalones.- 1. JBI Ascites Tumour Cell Chalone.- 2. Ehrlich Ascites Tumour Cell Chalone.- X. Connective Tissue and Fibroblast Chalones (?).- XI. Chalones of the Lung?.- XII. Other Chalones Indicated.- 1. Lens of the Eye.- 2. Endothelial Chalone?.- 3. Smooth Muscle Chalone?.- 4. Heart Muscle Chalone?.- 5. Placental Chalone?.- References.- Addendum.- Author Index.