Cart
Free US shipping over $10
Proud to be B-Corp

Oxidative Eustress in Exercise Physiology James N. Cobley

Oxidative Eustress in Exercise Physiology By James N. Cobley

Oxidative Eustress in Exercise Physiology by James N. Cobley


$191.39
Condition - New
Only 2 left

Summary

This book unravels key physiological responses and adaptations to different redox regulated exercise paradigms at the cell, tissue, and whole-body level in model systems and humans in health and disease.

Oxidative Eustress in Exercise Physiology Summary

Oxidative Eustress in Exercise Physiology by James N. Cobley

Describes essential redox biology reactions and concepts in exercise physiology.
Defines and critiques how to assess and manipulate key redox parameters in an in vivo
human exercise context.
Summarizes underlying mechanisms.
Provides examples of translationally important research relating to many disease states.
Includes an international team of leading experts

About James N. Cobley

Gareth Davison is Professor of Exercise Biochemistry and Physiology and Director of Research at the Sport and Exercise Sciences Research Institute at Ulster University in the UK. He holds a BA, MSc, and an MSt in Genomic Medicine from the University of Cambridge and was awarded his PhD in Biochemistry and Physiology in 2002. Professor Davison is a Fellow of the American College of Sports Medicine, and currently serves on several editorial boards, holding Editor roles with the Journal of Sports Sciences, Frontiers in Physiology (Redox Physiology Section) and Antioxidants. His research interests are aligned to exercise, DNA damage and antioxidant function. Recently, his laboratory has focused on bridging the gap between intracellular redox metabolism and DNA methylation in health and disease.

James Cobley is a Senior Lecturer in Free Radicals at the University of the Highlands and Islands (Inverness, UK). His doctoral work, completed in 2013, focused on the redox regulation of molecular exercise adaptations in young and old human skeletal muscle. Since then, Dr Cobley has focused on developing methods to measure protein thiol redox state; which has resulted in the development of two new methods: ALISA and RedoxiFluor. Dr Cobley intends, in collaboration with others, to use both technologies to determine if and how protein thiol defined redox signalling regulates exercise adaptations and responses.

Table of Contents

1. Introduction to Oxidative (Eu)stress in Exercise Physiology.Gareth W. Davison and James N. Cobley. 2. Measuring Oxidative Damage and Redox Signalling: Principles, Challenges, and Opportunities. James N. Cobley and Gareth W. Davison. 3. Exercise Redox Signalling: From ROS Sources to Widespread Health Adaptation. Ruy A. Louzada, Jessica Bouviere, Rodrigo S. Fortunato, Denise P. Carvalho. 4. Oxygen transport: a redox O2dyssey. Chatzinikolaou PN, Margaritelis NV, Chatzinikolaou AN, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, Nikolaidis MG. 5. Mitochondrial redox regulation in adaptation to exercise. Christopher P. Hedges and Troy L. Merry. 6. Basal Redox Status Influences the Adaptive Redox Response to Regular Exercise. Ethan L. Ostrom and Tinna Traustadottir. 7. Time to 'couple' redox biology with exercise immunology. Alex J Wadley and Steven J Coles. 8. Exercise and RNA oxidation. Emil List Larsen, Kristian Karstoft, Henrik Enghusen Poulsen. 9. Exercise and DNA Damage: Considerations for the Nuclear and Mitochondrial Genome. Josh Williamson and Gareth W. Davison. 10. Nutritional Antioxidants for Sports Performance. Jamie N. Pugh and Graeme L. Close. 11. Antioxidant supplements and exercise adaptations. Shaun A. Mason, Lewan Parker, Adam J. Trewin, Glenn D. Wadley. 12. Nitric oxide biochemistry and exercise performance in humans: influence of nitrate supplementation. Stephen J. Bailey and Andrew M. Jones. 13. (Poly)phenols in exercise performance and recovery - more than an antioxidant? Tom Clifford and Glyn Howatson. 14. Exercise: a strategy to target oxidative stress in cancer. Amelie Rebillard, Cindy Richard, Suzanne Dufresne. 15. Oxidative Stress and Exericse Tolerance in Cystic Fibrosis. Cassandra C. Derella, Adeola Sanni, Ryan A. Harris. 16. Ageing, Neurodegeneration and Alzheimer's Disease - The Underlying Role Of Oxidative Distress. Richard J Elsworthy and Sarah Aldred. 17. Exercise, Metabolism and Oxidative Stress in the Epigenetic Landscape. Gareth W. Davison and Colum P. Walsh.

Additional information

NPB9780367508760
9780367508760
0367508761
Oxidative Eustress in Exercise Physiology by James N. Cobley
New
Hardback
Taylor & Francis Ltd
2022-06-10
228
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Oxidative Eustress in Exercise Physiology