Cart
Free US shipping over $10
Proud to be B-Corp

Recommender System for Improving Customer Loyalty Katarzyna Tarnowska

Recommender System for Improving Customer Loyalty By Katarzyna Tarnowska

Recommender System for Improving Customer Loyalty by Katarzyna Tarnowska


$139.29
Condition - New
Only 2 left

Summary

This book presents the Recommender System for Improving Customer Loyalty. The data mining techniques employed in the Recommender System allow users to learn from the experiences of others, without sharing proprietary information.

Recommender System for Improving Customer Loyalty Summary

Recommender System for Improving Customer Loyalty by Katarzyna Tarnowska

This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience.

The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to learn from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to weigh these actions and determine which ones would have a greater impact.

About Katarzyna Tarnowska


Table of Contents

Chapter 1: Introduction.- Chapter 2: Customer Loyalty Improvement.- Chapter 3: State of the Art.- Chapter 4: Background.- Chapter 5: Overview of Recommender System Engine.- Chapter 6: Visual Data Analysis.- Chapter 7: Improving Performance of Knowledge Miner.- Chapter 8: Recommender System Based on Unstructured Data.- Chapter 9: Customer Attrition Problem.- Chapter 10: Conclusion.

Additional information

NPB9783030134372
9783030134372
3030134377
Recommender System for Improving Customer Loyalty by Katarzyna Tarnowska
New
Hardback
Springer Nature Switzerland AG
2019-03-27
124
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Recommender System for Improving Customer Loyalty