How to Read this Guide to Geometric Algebra in Practice.- Part I: Rigid Body Motion.- Rigid Body Dynamics and Conformal Geometric Algebra.- Estimating Motors from a Variety of Geometric Data in 3D Conformal Geometric Algebra.- Inverse Kinematics Solutions Using Conformal Geometric Algebra.- Reconstructing Rotations and Rigid Body Motions from Exact Point Correspondences through Reflections.- Part II: Interpolation and Tracking.- Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra using Polar Decomposition.- Attitude and Position Tracking / Kinematics.- Calibration of Target Positions using Conformal Geometric Algebra.- Part III: Image Processing.- Quaternion Atomic Function for Image Processing.- Color Object Recognition Based on a Clifford Fourier Transform.- Part IV: Theorem Proving and Combinatorics.- On Geometric Theorem Proving with Null Geometric Algebra.- On the Use of Conformal Geometric Algebra in Geometric Constraint Solving.- On the Complexity of Cycle Enumeration for Simple Graphs.- Part V: Applications of Line Geometry.- Line Geometry in Terms of the Null Geometric Algebra over R3,3, and Application to the Inverse Singularity Analysis of Generalized Stewart Platforms.- A Framework for n-dimensional Visibility Computations.- Part VI: Alternatives to Conformal Geometric Algebra.- On the Homogeneous Model of Euclidean Geometry.- A Homogeneous Model for 3-Dimensional Computer Graphics Based on the Clifford Algebra for R3.- Rigid-Body Transforms using Symbolic Infinitesimals.- Rigid Body Dynamics in a Constant Curvature Space and the 1D-up Approach to Conformal Geometric Algebra.- Part VII: Towards Coordinate-Free Differential Geometry.- The Shape of Differential Geometry in Geometric Calculus.- On the Modern Notion of a Moving Frame.- Tutorial: Structure Preserving Representation of Euclidean Motions through Conformal Geometric Algebra.