Cart
Free US shipping over $10
Proud to be B-Corp

Beginning Data Science with R Manas A. Pathak

Beginning Data Science with R By Manas A. Pathak

Beginning Data Science with R by Manas A. Pathak


$203.79
Condition - New
Only 2 left

Summary

The growing popularity of R is due its statistical roots and a vast open source package library.
The goal of Beginning Data Science with R is to introduce the readers to some of the useful data science techniques and their implementation with the R programming language.

Beginning Data Science with R Summary

Beginning Data Science with R by Manas A. Pathak

We live in the age of data. In the last few years, the methodology of extracting insights from data or "data science" has emerged as a discipline in its own right. The R programming language has become one-stop solution for all types of data analysis. The growing popularity of R is due its statistical roots and a vast open source package library.
The goal of Beginning Data Science with R is to introduce the readers to some of the useful data science techniques and their implementation with the R programming language. The book attempts to strike a balance between the how: specific processes and methodologies, and understanding the why: going over the intuition behind how a particular technique works, so that the reader can apply it to the problem at hand. This book will be useful for readers who are not familiar with statistics and the R programming language.

Beginning Data Science with R Reviews

The target audience for this book is non-R programmers and non-statisticians. if you want to get started with R and/or new statistical procedures have a look at this book. It can be quite helpful. (David E. Booth, Technometrics, Vol. 58 (2), 2016)

This book is written for coders who already know how to code to learn R for data science. The book covers how to install and use R . This is a good book to get you stated coding in R for data science. (Mary Anne, Cats and Dogs with Data, maryannedata.com, May, 2015)

A comprehensive, yet short tutorial on practical application of R to the modern data science tasks or projects. Who I recommend it to: managers who work on data projects, technical team leaders, CS students, Business Intelligence professionals, beginner architects, general computer academia, statisticians, several categories of scientists or researchers as biologists, lab, criminologists, and also Finance pros or actuarials. (Compudicted, compudicted.wordpress.com, February, 2015)

About Manas A. Pathak

Dr. Manas A. Pathak received a BTech degree in computer science from Visvesvaraya National Institute of Technology, Nagpur, India, in 2006, and MS and PhD degrees from the Language Technologies Institute at Carnegie Mellon University (CMU) in 2009 and 2012 respectively. His PhD thesis on "Privacy-Preserving Machine Learning for Speech Processing" was published as a monograph in the Springer best thesis series. His research received significant press coverage, including articles in the Economist and MIT Tech Review. He has many years of experience with data analysis using the R programming language. He is currently working as a staff software engineer at @WalmartLabs.

Table of Contents

4.4 Interactive Visualizations using Shiny 4.5 Chapter Summary & Further Reading References 5 Exploratory Data Analysis 5.1 Summary Statistics 5.1.1 Dataset Size 5.1.2 Summarizing the Data 5.1.3 Ordering Data by a Variable 5.1.4 Group and Split Data by a Variable 5.1.5 Variable Correlation 5.2 Getting a sense of data distribution 5.2.1 Box plots 5.2.2 Histograms 5.2.3 Measuring Data Symmetry using Skewness and Kurtosis 5.3 Putting it all together: Outlier Detection 5.4 Chapter Summary References 6 Regression 6.1 Introduction 6.1.1 Regression Models 6.2 Parametric Regression Models 6.2.1 Simple Linear Regression 6.2.2 Multivariate Linear Regression 6.2.3 Log-Linear Regression Models 6.3 Non-Parametric Regression Models 6.3.1 Locally Weighted Regression 6.3.2 Kernel Regression 6.3.3 Regression Trees 6.4 Chapter Summary References 7 Classification 7.1 Introduction 7.1.1 Training and Test Datasets 7.2 Parametric Classification Models 7.2.1 Naive Bayes 7.2.2 Logistic Regression 7.2.3 Support Vector Machines 7.3 Non-Parametric Classification Models 7.3.1 Nearest Neighbors 7.3.2 Decision Trees 7.4 Chapter Summary References 8 Text Mining 8.1 Introduction 8.2 Reading Text Input Data 8.3 Common Text Preprocessing Tasks 8.3.1 Stop Word Removal 8.3.2 Stemming 8.4 Term Document Matrix 8.4.1 TF-IDF Weighting Function 8.5 Text Mining Applications 8.5.1 Frequency Analysis 8.5.2 Text Classification 8.6 Chapter Summary

Additional information

NPB9783319120652
9783319120652
3319120654
Beginning Data Science with R by Manas A. Pathak
New
Hardback
Springer International Publishing AG
2014-12-18
157
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Beginning Data Science with R