Introduction to Statistical Modelling and Inference by Murray Aitkin (University of Melbourne, Australia)
Features
- Probability models are developed from the shape of the sample empirical cumulative distribution function, (cdf) or a transformation of it.
- Bounds for the value of the population cumulative distribution function are obtained from the Beta distribution at each point of the empirical cdf.
- Bayes's theorem is developed from the properties of the screening test for a rare condition.
- The multinomial distribution provides an always-true model for any randomly sampled data.
- The model-free bootstrap method for finding the precision of a sample estimate has a model-based parallel - the Bayesian bootstrap - based on the always-true multinomial distribution.
- The Bayesian posterior distributions of model parameters can be obtained from the maximum likelihood analysis of the model.