Extensions of Moser-Bangert Theory: Locally Minimal Solutions by Paul H. Rabinowitz
This self-contained monograph presents extensions of the Moser-Bangert approach that include solutions of a family of nonlinear elliptic PDEs on Rn and an Allen-Cahn PDE model of phase transitions. After recalling the relevant Moser-Bangert results, Extensions of Moser-Bangert Theory pursues the rich structure of the set of solutions of a simpler model case, expanding upon the studies of Moser and Bangert to include solutions that merely have local minimality properties.
The work is intended for mathematicians who specialize in partial differential equations and may also be used as a text for a graduate topics course in PDEs.