1 Endothelium-Dependent Relaxation in Systemic Arteries.- 1. Historical Perspective.- 1.1. The Discovery of Acetylcholine-Induced Endothelium-Dependent Relaxation.- 1.2. Other Early Findings, Conclusions, and Speculation.- 2. Recent Developments.- 2.1. The Role of Cyclic GMP in Endothelium-Dependent Relaxation.- 2.2. Additional Agents Producing Endothelium-Dependent Relaxation.- 2.3. Inhibitors of Endothelium-Dependent Relaxation.- 2.4. Further Characterization of EDRF.- References.- 2 Endothelium-Dependent Contractions in Veins and Arteries.- 1. Introduction.- 2. Metabolite(s) of Arachidonic Acid (EDCF1).- 2.1. Veins.- 2.2. Cerebral Arteries.- 3. Hypoxia.- 4. Conclusion.- References.- 3 The Nature of Endothelium-Derived Relaxing Factor.- 1. Introduction.- 2. Physical Properties.- 3. Chemical Properties.- 3.1. Experimental Approach.- 3.2. Inhibition of Antioxidants.- 3.3. Metabolism of Arachidonate and EDRF.- 4. Mechanisms of Production.- 4.1. Stimulated Release.- 4.2. Basal Release.- 5. Endogenous Inactivation.- 5.1. Hemoglobin.- 5.2. Haptoglobin-Hemoglobin Complex.- 6. Mode of Action and Inferences for the Identity of EDRF.- 7. Modulation of Vasomotor Responses by Basal Release of EDRF.- 7.1. Pharmacological Implications.- 7.2. Physiological Implications.- 7.3. Pathophysiological Implications.- 8. EDRF In Vivo.- 9. Conclusions.- References.- 4 Metabolism of Arachidonic Acid and Release of Endothelium-Derived Relaxing Factors.- 1. Introduction.- 2. Endothelial Cell Metabolism of Arachidonic Acid.- 2.1. Cyclooxygenase Pathways.- 2.2. Lipoxygenase Pathways.- 2.3. Cytochrome P-450 Pathways.- 3. Evidence Relating Arachidonate Metabolites to EDRF.- 3.1. Inhibition of Arachidonic Acid Metabolism.- 3.2. Involvement of Phospholipase and Calcium Dependence.- 3.3. Exogenous Arachidonic Acid Studies.- 3.4. Melittin and Endogenous Arachidonate Studies.- 3.5. Antioxidants and Nonspecific Radical Scavengers.- 3.6. Electron Spin Resonance Spectroscopy.- 4. Evidence Against Arachidonate Metabolite Hypothesis.- 4.1. Nonspecific Action of Many Blockers.- 4.2. Other Fatty Acids Cause Endothelium-Dependent Relaxation.- 4.3. Possible Hydrophilic Nature of EDRF.- 4.4. Exogenous Application of Arachidonate Metabolites.- 5. Future Studies of Endothelium-Derived Relaxing Factor(s).- References.- 5 Modulation of the Release and Biological Activity of Endothelium-Derived Relaxing Factor by Oxygen-Derived Free Radicals.- 1. Introduction.- 2. Direct Actions on Vascular Smooth Muscle.- 3. Adrenergic Neurotransmission.- 4. Endothelium-Dependent Relaxations.- 4.1. Endothelium-Derived Relaxing Factor(s) Is Not Likely To Be an Oxygen-Derived Free Radical.- 4.2. Hydrogen Peroxide Triggers the Release of Endothelium-Derived Relaxing Factor(s).- 4.3. Hydroxyl Radical Facilitates and Superoxide Anion Inhibits Endothelium-Dependent Relaxations to Acetylcholine.- 4.4. Superoxide Anions Inactivate Endothelium-Derived Relaxing Factors.- 5. Conclusions.- References.- 6 Endothelial Cells in Culture and Production of Endothelium-Derived Relaxing Factor.- 1. Introduction.- 2. Isolation of EDRF.- 2.1. Endothelial Cells in Culture.- 2.2. Culture of Endothelial Cells on Microcarrier Beads.- 2.3. Release of EDRF from Endothelial Cells Grown on Microcarrier Beads.- 3. Properties of EDRF.- 3.1. Half-Life In Vitro: Its Estimation by the Analysis of Concentration-Relaxation Curves.- 3.2. Other Properties of EDRF Released from Cultured Endothelial Cells.- 4. Whole Artery as a Source of EDRF-A Comparison with Cells in Culture.- 5. Concluding Remarks.- References.- 7 Endothelial Cells in Culture and Production of Endothelium-Derived Constricting Factors.- 1. Introduction.- 2. Evidence for the Presence of Constricting Factors in Vascular Endothelium.- 3. Endothelium-Derived Constricting Factor(s) Produced by Endothelial Cells in Culture.- 3.1. Methodology for Studying EDCF.- 3.2. Endothelial Cell Source, Culture Conditions, and Time Course of Production of EDCF.- 3.3. Physiological Response to EDCF.- 3.4. Biochemical and Pharmacological Characterization of EDCF.- 3.5. Potential Mechanism(s) of Action of EDCF on Vascular Smooth Muscle.- 4. Effect of Hypoxia on EDCF Release.- 5. Concluding Remarks.- References.- 8 Basal Release of Endothelium-Derived Relaxing Factor.- 1. Scope.- 2. Detection of Basal EDRF Release.- 2.1. Cascade Bioassay Experiments.- 2.2. Basal EDRF Release and Cyclic GMP.- 2.3. Calcium Dependency.- 2.4. Potentiating Action of Phosphodiesterase Inhibitors.- 3. Endothelium-Dependent Depression of Vasoconstrictor Responses.- 3.1. EDRF Release Elicited by Vasoconstrictor Agents.- 3.2. Depression of Alpha-Adrenergic Contractions by Spontaneously Released EDRF in the Rat Aorta.- 3.3. Hemoglobin and Methylene Blue.- 3.4. Efficacy of Alpha-Adrenergic Agonists.- 3.5. Aorta of the Rabbit.- 4. Depression of Resting and Stimulated 45C2+ Influx by Spontaneously Released EDRF.- 5. Hypoxia-Induced Endothelium-Dependent Reponses.- 6. Differences in Basal EDRF Release.- 7. Basal EDRF Release and Vasospasm.- 8. Concluding Remarks.- References.- 9 Calcium Transport Mechanisms in Endothelial Cells Regulating the Synthesis and Release of Endothelium-Derived Relaxing Factor.- 1. Introduction.- 2. Influx of Extracellular Ca2+.- 2.1. Removal of Extracellular Ca2+.- 2.2. Ca2+ Channel Agonists.- 2.3. Ca2+ Channel Antagonists.- 2.4. Na+-Ca2+ Exchange.- 3. Liberation of Ca2+ from Intracellular Pools.- 4. Concluding Remarks.- References.- 10 Release of Endothelium-Derived Relaxing Factor(s) by Physicochemical Stimuli Eberhard Bassenge, Rudi Busse, and Ulrich Pohl.- 1. Introduction.- 2. EDRF Release and Vascular Response: Asymmetrie Behavior of the Vascular Wall.- 2.1. Bipolar Release.- 2.2. Differential Response of Inner and Outer Smooth Muscle to EDRF.- 2.3. Transmural Endothelial Stimulation.- 3. Flow-Rate and Regulation of Vascular Tone.- 3.1. Vasomotion of Arteries in Response to Changes in Flow Rate.- 3.2. Endothelial Cells as Flow Sensors.- 3.3. Physiological Relevance of Flow-Dependent Dilation.- 3.4. Effect of Long-Term Alterations in Flow Rate on Vascular Caliber.- 4. Pulsatile Flow and Release of Endothelium-Derived Vasodilators.- 4.1. Prostacyclin.- 4.2. Endothelium-Derived Relaxant Factor.- 5. Oxygen.- 5.1. Hypoxia Vs Anoxia.- 5.2. Oxygen Sensitivity of the Vascular Wall.- 5.3. Oxygen and Release/Transfer of Vasoactive Compounds from Endothelial Cells.- 6. Concluding Remarks.- References.- 11 Role of Cyclic GMP in Endothelium-Dependent Relaxation of Vascular Smooth Muscle.- 1. Introduction.- 2. Elevation of Cyclic GMP Levels in Smooth Muscle by Agents that Act on the Endothelium.- 3. Effects of Inhibitors of Guanylate Cyclase on Endothelium-Dependent Relaxation and Formation of Cyclic GMP.- 3.1. Effects of Free Radical Scavengers and Reducing Agents.- 3.2. Effects of Cyanide.- 4. Effects of Inhibitors of Phosphodiesterase on Endothelium-Dependent Relaxation and Formation of Cyclic GMP.- 5. Effects of Inhibitors of Phospholipase A2, Cyclooxygenase, and Lipoxygenase on Endothelium-Dependent Relaxation and Levels of Cyclic GMP.- 6. Effects of Inhibitors of Na+,K+ Pump and Membrane Depolarizing Agents on Endothelium-Dependent Relaxation and Formation of Cyclic GMP.- 7. Effects of Nitroglycerin-Induced Desensitization on Endothelium-Dependent Relaxation and Formation of Cyclic GMP.- 8. Effects of Contractile Agents on Cyclic GMP Levels and the Role of the Endothelium.- 9. Role of the Endothelium and Cyclic GMP in the Regulation of Basal Tone.- 10. Conclusions.- References.- 12 Modulation by the Endothelium of Agonist-Induced Contractions of Vascular Smooth Muscle.- 1. Introduction.- 2. Modulatory Effect of Endothelium on Agonist-Induced Contractile Responses.- 3. Dependence of Endothelium-Modulated Responses on Calcium.- 4. Calcium Channels and Endothelial Cells.- 5. Possible Importance of Na+-Ca2+ Exchange for Release of EDRF.- 6. Effect of Endothelium on Mobilization of Intracellular Calcium for Contraction.- 7. Effect of Endothelium on Calcium Uptake by Vascular Tissues.- 7.1. Basal Uptake.- 7.2 Stimulated Uptake.- 8. Effect of Endothelium on Efflux of Calcium.- 8.1. Basal Efflux.- 8.2. Efflux of Calcium from Stimulated Tissues.- 9. Effects of Muscarinic Agonists on Ca2+ Influx and Efflux in Vessels With and Without Endothelium.- 10. Importance of the Modulatory Effect of Endothelium on Cellular Ca2+ Movements.- 11. Do Contractile Agonists Stimulate the Release of EDRF or Are Modulatory Effects Dependent on Basal Release of EDRF?.- References.- 13 Endothelium-Derived Relaxing Factor Relaxes Vascular Smooth Muscle by Cyclic GMP-Mediated Effects on Calcium Movements.- 1. Introduction.- 2. Calcium Influx.- 2.1. EDRF.- 2.2. Nitrovasodilators, 8-Bromo-cyclic GMP.- 2.3. Cyclic GMP and Calcium Influx.- 2.4. Specificity for Receptor-Operated Channels?.- 3. Calcium Efflux.- 3.1. EDRF.- 3.2. Nitrovasodilators, 8-Bromo-cyclic GMP.- 3.3. Implications of Efflux Data.- 4. Biochemical Mechanisms.- 5. Concluding Remarks.- References.- 14 Heterogeneity in Endothelium-Dependent Relaxations: Acute, Chronic, and Evolutionary Modulations.- 1. Introduction.- 2. Hormones.- 2.1. Acute Effects.- 2.2. Chronic Effects.- 3. Innervation.- 4. Blood Flow.- 4.1. Acute Conditions.- 4.2. Chronic Conditions.- 5. Oxygen.- 5.1. Acute Effects.- 5.2. Chronic Effects.- 6. Concluding Remarks.- References.- 15 Endothelium-Dependent Regulation of Resting Levels of Cyclic GMP and Cyclic AMP and Tension in Pulmonary Arteries and Veins.- 1. Introduction.- 2. Resting Levels of Cyclic GMP and Cyclic AMP.- 3. Endothelium-Dependent Regulation of Vascular Cyclic GMP Levels.- 3.1. Methylene Blue.- 3.2. MB 22948.- 4. Dependence of Activity of EDRF on the Diameter of the Blood Vessels.- 4.1. Artery.- 4.2. Vein.- 5. Relationship Between Resting Cyclic Nucleotide Levels and Endothelial Integrity in Arteries and Veins.- 6. Some Unique Properties of Putative EDRF.- 6.1. Direct Activation of Soluble Guanylate Cyclase.- 6.2. Stability of EDRF..- 6.3. Chemical Reactivity of EDRF.- 6.4. Sites of Action of Agents Affecting EDRF Activity.- 7. Conclusions and Future Direction.- References.- 16 Endothelium-Dependent Responses of Cerebral Arteries.- 1. Introduction.- 2. Endothelium-Dependent Relaxations.- 2.1. Acetylcholine.- 2.2. Bradykinin.- 2.3. Thrombin.- 2.4. Vasopressin and Oxytocin.- 3. Endothelium-Dependent Contractions.- 3.1. Arachidonic Acid, Calcium Ionophore A23187, and Acetylcholine.- 3.2. Anoxia.- 3.3. Potassium.- 3.4. Stretch.- References.- 17 Endothelium, Blood Flow, and Vascular Responses in Large Coronary and Iliac Arteries of the Conscious Dog.- 1. Introduction.- 2. Direct, Endothelium-Independent Vasodilatation.- 3. Endothelium-Mediated, Blood Flow-Independent Vasodilatation.- 4. Endothelium-Dependent, Blood Flow-Mediated Vasodilatation.- 5. Endothelium-Mediated Protection Against Vasoconstriction.- 6. Concluding Remarks.- References.- 18 Endothelium-Dependent Responses in Large Arteries and in the Microcirculation.- 1. Introduction.- 2. EDRF and Reactivity of Large Arteries In Vivo.- 2.1. Sonomicrometry in Femoral and Coronary Arteries under Conditions of Controlled Flow and Pressure.- 2.2. Chronic Measurement of the Diameter of the Carotid Artery after Removal of the Endothelium.- 3. Reactivity of Large Arteries In Vitro.- 3.1. EDRF Is Released by Norepinephrine and Serotonin.- 3.2. Classification of Endothelial Alpha2-Adrenoceptors.- 3.3. Distribution of Alpha2-Adrenoceptors on Endothelium.- 3.4. Comparison of Endothelium-Dependent Agonists in Five Large Arteries.- 3.5. Carotid Artery Reactivity 4 wk after Endothelial Denudation.- 4. Reactivity of Microcirculation to EDRF.- 4.1. Effect of Hypertension on Reactivity of the Hindquarter of the Rabbit.- 4.2. Effect of Cholesterol on EDRF.- 5. EDRF and Coronary Atheroma.- 6. Conclusions.- References.- 19 Endothelium-Dependent Responses in the Peripheral Microcirculation.- 1. Introduction.- 2. Methods.- 2.1. Preparation.- 2.2. X-Ray Techniques. Contrast Medium.- 2.3. Quantitation.- 2.4. Agents Used To Induce Tone. Hemoglobin.- 3. Network Analysis.- 4. Results and Discussion.- 4.1. Basal and Stimulated Release of EDRF. Evidence for a Complex Interaction with Vessel Tone.- 4.2. Regulation of Resistance by Basal EDRF Release.- 4.3. Flow-Dependent EDRF-Mediated Dilatation.- 4.4. Regulation of Flow Distribution by Basal EDRF Release.- 4.5. Influence of Basal EDRF Release on Power Losses and Pressure-Flow Characteristics.- 5. Concluding Remarks.- References.- 20 Endothelium-Dependent Vasodilatation in the Cerebral Microcirculation.- 1. Introduction.- 2. Endothelium-Dependent Vasodilatation from Acetylcholine in Cerebral Microvessels.- 3. Endothelium-Dependent Vasodilatation from Agents Other than Acetylcholine.- 4. Reversibility of Elimination of Endothelium-Dependent Vasodilatation in Cerebral Arterioles.- 5. Nature of EDRF in the Cerebral Microcirculation.- 6. Significance.- References.- 21 Platelets and Endothelium-Dependent Responses.- 1. Introduction.- 2. Platelet-Vessel Interactions.- 2.1. Adhesion.- 2.2. Atherosclerosis.- 3. In Vitro Experiments: Endothelial Response to Platelets.- 3.1. Contractile Responses.- 3.2. Platelet-Induced Relaxations.- 3.3. Serotonin.- 3.4. Adenine Nucleotides.- 3.5. Other Possible Mediators.- 3.6. Other Vessels.- 4. In Vivo Models.- 4.1. Artificial Damage.- 4.2. Atherosclerotic Damage.- 4.3. Coronary Occlusion.- 5. Clinical Studies.- 5.1. Evidence of Platelet Activation.- 5.2. Serotonin.- 5.3. Thromboxane A2.- 6. Conclusions.- References.- 22 Endothelium-Dependent Responses and the Release of Endothelium-Derived Relaxing Factor in Atherosclerotic Blood Vessels.- 1. Introduction.- 2. Atherosclerosis and the Structure of the Blood Vessel Wall.- 2.1. Introduction.- 2.2. The Atherosclerotic Lesions.- 2.3. Mechanism of Atherosclerotic Plaque Formation.- 2.4. Animal Models of Atherosclerosis.- 2.5. Effects of Drugs on the Pathogenesis and Regression of Atherosclerosis.- 3. Vascular Responses in Atherosclerotic Blood Vessels.- 3.1. In Vivo Observations.- 3.2. In Vitro Observations.- 4. Endothelium-Dependent Relaxations in Atherosclerotic Blood Vessels.- 4.1. Introduction.- 4.2. Endothelium-Dependent Relaxations.- 4.3. Endothelium-Independent Relaxations to Nitroglycerin.- 4.4. Effect of Dipyridamole Treatment on Endothelium-Dependent Relaxations in Atherosclerotic Arteries.- 4.5. Release of EDRF.- 5. Conclusions.- References.- 23 Endothelium-Dependent Relaxations in Hypertensive Blood Vessels.- 1. Introduction.- 2. Factors Influencing Vasodilator Responsiveness.- 2.1. Contractile State of Vascular Preparation.- 2.2. Age.- 2.3. Origin of Vasodilator Abnormality.- 3. Relaxations in Hypertensive Blood Vessels.- 3.1. Prior to Discovery of EDRF.- 3.2. Studies Analyzing Endothelium-Dependent Vs Independent Relaxations in Hypertensive Blood Vessels.- 4. Structural and/or Biochemical Endothelial Alterations in Hypertension.- 4.1. Structural Alterations.- 4.2. Biochemical Alterations.- 5. Conclusions.- References.- 24 Mechanisms of Altered Endothelium-Dependent Responses in Hypertensive Blood Vessels.- 1. Introduction.- 2. Morphological Changes.- 3. Endothelium-Dependent Responses in Hypertensive Blood Vessels.- 3.1. Endothelium-Dependent Relaxations.- 3.2. Endothelium-Dependent Contractions.- 3.3. Mechanisms of Altered Endothelium-Dependent Responses in Hypertensive Blood Vessels.- 4. Possible Importance of Altered Endothelial Function in Hypertension.- 4.1. Peripheral Vascular Resistance.- 4.2. Vascular Complications.- 4.3. Antihypertensive Therapy.- References.- 25 Endothelium-Dependent Responses in Human Arteries.- 1. Introduction.- 2. Source Materials and Methods.- 3. Outline.- 4. Response to Acetylcholine.- 5. Other EDRF Releasers.- 6. Inhibitors of EDRF.- 7. Interesting Negatives.- 8. Concluding Comments.- References.