I. Modules.- 1. Modules.- 2. The Group of Homomorphisms.- 3. Sums and Products.- 4. Free and Projective Modules.- 5. Projective Modules over a Principal Ideal Domain.- 6. Dualization, Injective Modules.- 7 Injective Modules over a Principal Ideal Domain.- 8. Cofree Modules.- 9. Essential Extensions.- II. Categories and Functors.- 1. Categories.- 2. Functors.- 3. Duality.- 4. Natural Transformations.- 5. Products and Coproducts; Universal Constructions.- 6. Universal Constructions (Continued); Pull-backs and Push-outs.- 7. Adjoint Functors.- 8. Adjoint Functors and Universal Constructions.- 9. Abelian Categories.- 10. Projective, Injective, and Free Objects.- III. Extensions of Modules.- 1. Extensions.- 2. The Functor Ext.- 3. Ext Using Injectives.- 4. Computation of some Ext-Groups.- 5. Two Exact Sequences.- 6. A Theorem of Stein-Serre for Abelian Groups.- 7. The Tensor Product.- 8. The Functor Tor.- IV. Derived Functors.- 1. Complexes.- 2. The Long Exact (Co) Homology Sequence.- 3. Homotopy.- 4. Resolutions.- 5. Derived Functors.- 6. The Two Long Exact Sequences of Derived Functors.- 7. The Functors Extn? Using Projectives.- 8. The Functors % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbWexLMBb50ujbqegm0B % 1jxALjharqqr1ngBPrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY- % Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq % 0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaae % aaeaaakeaadaqdaaqaaGqaaiaa-veacaWF4bGaa8hDaaaadaqhaaWc % baacciGae43MdWeabaGaamOBaaaaaaa!40A3! $$ \\overline {Ext} _\\Lambda ^n $$ Using Injectives.- 9. Extn and n-Extensions.- 10. Another Characterization of Derived Functors.- 11. The Functor Torn?.- 12. Change of Rings.- V. The Kiinneth Formula.- 1. Double Complexes.- 2. The Kunneth Theorem.- 3. The Dual Kunneth Theorem.- 4. Applications of the Kunneth Formulas.- VI. Cohomology of Groups.- 1. The Group Ring.- 2. Definition of (Co) Homology.- 3. H0, H0.- 4. H1, H1 with Trivial Coefficient Modules.- 5. The Augmentation Ideal, Derivations, and the Semi-Direct Product.- 6. A Short Exact Sequence.- 7. The (Co) Homology of Finite Cyclic Groups.- 8. The 5-Term Exact Sequences.- 9. H2, Hopf's Formula, and the Lower Central Series.- 10. H2 and Extensions.- 11. Relative Projectives and Relative Injectives.- 12. Reduction Theorems.- 13. Resolutions.- 14. The (Co) Homology of a Coproduct.- 15. The Universal Coefficient Theorem and the (Co)Homology of a Product.- 16. Groups and Subgroups.- VII. Cohomology of Lie Algebras.- 1. Lie Algebras and their Universal Enveloping Algebra.- 2. Definition of Cohomology; H0, H1.- 3. H2 and Extensions.- 4. A Resolution of the Ground Field K.- 5. Semi-simple Lie Algebras.- 6. The two Whitehead Lemmas.- 7. Appendix : Hubert's Chain-of-Syzygies Theorem.- VIII. Exact Couples and Spectral Sequences.- 1. Exact Couples and Spectral Sequences.- 2. Filtered Differential Objects.- 3. Finite Convergence Conditions for Filtered Chain Complexes.- 4. The Ladder of an Exact Couple.- 5. Limits.- 6. Rees Systems and Filtered Complexes.- 7. The Limit of a Rees System.- 8. Completions of Filtrations.- 9. The Grothendieck Spectral Sequence.- IX. Satellites and Homology.- 1. Projective Classes of Epimorphisms.- 2. ?-Derived Functors.- 3. ?-Satellites.- 4. The Adjoint Theorem and Examples.- 5. Kan Extensions and Homology.- 6. Applications: Homology of Small Categories, Spectral Sequences.- X. Some Applications and Recent Developments.- 1. Homological Algebra and Algebraic Topology.- 2. Nilpotent Groups.- 3. Finiteness Conditions on Groups.- 4. Modular Representation Theory.- 5. Stable and Derived Categories.