Cart
Free US shipping over $10
Proud to be B-Corp

Fractal Functions, Fractal Surfaces, and Wavelets Peter R. Massopust (Centre of Mathematics, Technical University of Munich, Germany)

Fractal Functions, Fractal Surfaces, and Wavelets By Peter R. Massopust (Centre of Mathematics, Technical University of Munich, Germany)

Fractal Functions, Fractal Surfaces, and Wavelets by Peter R. Massopust (Centre of Mathematics, Technical University of Munich, Germany)


$82.59
Condition - New
Only 2 left

Summary

Presents an exposition of the theory of fractal surfaces, a natural outgrowth of fractal sets and fractal functions. This text is based on Massopusts work on and contributions to the theory of fractal functions, and uses a number of tools - including analysis, topology, algebra, and probability theory.

Fractal Functions, Fractal Surfaces, and Wavelets Summary

Fractal Functions, Fractal Surfaces, and Wavelets by Peter R. Massopust (Centre of Mathematics, Technical University of Munich, Germany)

Fractal Functions, Fractal Surfaces, and Wavelets is the first systematic exposition of the theory of fractal surfaces, a natural outgrowth of fractal sets and fractal functions. It is also the first treatment to bring these general considerations to bear on the burgeoning field of wavelets. The text is based on Massopusts work on and contributions to the theory of fractal functions, and the author uses a number of tools--including analysis, topology, algebra, and probability theory--to introduce readers to this new subject. Though much of the material presented in this book is relatively current (developed in the past decade by the author and his colleagues) and fairly specialized, an informative background is provided for those

Fractal Functions, Fractal Surfaces, and Wavelets Reviews

Massopust provides the basic theory and results from manipulating fractal functions and surfaces, and discusses future directions and applications to wavelet theory and fractal dynamics...Recommended. --D.E. Bentil,University of Massachusetts at Amherst

About Peter R. Massopust (Centre of Mathematics, Technical University of Munich, Germany)

Peter R. Massopust is a Privatdozent in the Center of Mathematics at the Technical University of Munich, Germany. He received his Ph.D. in Mathematics from the Georgia Institute of Technology in Atlanta, Georgia, USA, and his habilitation from the Technical University of Munich. He worked at several universities in the United States, at the Sandia National Laboratories in Albuquerque (USA), and as a senior research scientist in industry before returning to the academic environment. He has written more than sixty peer-reviewed articles in the mathematical areas of Fourier Analysis, Approximation Theory, Fractals, Splines, and Harmonic Analysis and more than 20 technical reports while working in the non-academic environment. He has authored or coauthored two textbooks and two monographs, and coedited two Contemporary Mathematics Volumes and several Special Issues for peer-reviewed journals. He is on the editorial board of several mathematics journals and has given more than one hundred invited presentations at national and international conferences, workshops, and seminars.

Table of Contents

(Subchapter Titles): I. Foundations. Mathematical Preliminaries: Analysis and Topology. Probability Theory. Algebra. Construction of Fractal Sets: Classical Fractal Sets. Iterated Function Systems. Recurrent Sets. Graph Directed Fractal Constructions. Dimension Theory: Topological Dimensions. Metric Dimensions. Probabilistic Dimensions. Dimension Results for Self-Affine Fractals. The Box Dimension of Projections. Dynamical Systems and Dimension. II. Fractal Functions and Fractal Surfaces: Fractal Function Construction: The Read-BajraktarevicOperator. Recurrent Sets as Fractal Functions. Iterative Interpolation Functions. Recurrent Fractal Functions. Hidden Variable Fractal Functions. Properties of Fractal Functions. Peano Curves. Fractal Functions of Class Ck. Dimension of Fractal Functions: Dimension Calculations. Function Spaces and Dimension. Fractal Functions and Wavelets: Basic Wavelet Theory. Fractal Function Wavelets. Fractal Surfaces: Tensor Product Fractal Surfaces. Affine Fractal Surfaces in Rn+M. Properties of Fractal Surfaces. Fractal Surfaces of Class Ck. Fractal Surfaces and Wavelets in Rn: Brief Review of Coxeter Groups. Fractal Functions on Foldable Figures. Interpolation on Foldable Figures. Dilation and W Invariant Spaces. Multiresolution Analyses. List of Symbols. Bibliography. Author Index. Subject Index.

Additional information

NPB9780124788404
9780124788404
0124788408
Fractal Functions, Fractal Surfaces, and Wavelets by Peter R. Massopust (Centre of Mathematics, Technical University of Munich, Germany)
New
Hardback
Elsevier Science Publishing Co Inc
1995-02-06
383
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Fractal Functions, Fractal Surfaces, and Wavelets