Cart
Free US shipping over $10
Proud to be B-Corp

Foliations on Riemannian Manifolds Philippe Tondeur

Foliations on Riemannian Manifolds By Philippe Tondeur

Foliations on Riemannian Manifolds by Philippe Tondeur


$122.69
Condition - New
Only 2 left

Summary

Towards the end of the nineteenth century, Poincare developed methods for the study of global, qualitative properties of solutions of dynamical systems in situations where explicit solution methods had failed: He discovered that the study of the geometry of the space of trajectories of a dynamical system reveals complex phenomena.

Foliations on Riemannian Manifolds Summary

Foliations on Riemannian Manifolds by Philippe Tondeur

A first approximation to the idea of a foliation is a dynamical system, and the resulting decomposition of a domain by its trajectories. This is an idea that dates back to the beginning of the theory of differential equations, i.e. the seventeenth century. Towards the end of the nineteenth century, Poincare developed methods for the study of global, qualitative properties of solutions of dynamical systems in situations where explicit solution methods had failed: He discovered that the study of the geometry of the space of trajectories of a dynamical system reveals complex phenomena. He emphasized the qualitative nature of these phenomena, thereby giving strong impetus to topological methods. A second approximation is the idea of a foliation as a decomposition of a manifold into submanifolds, all being of the same dimension. Here the presence of singular submanifolds, corresponding to the singularities in the case of a dynamical system, is excluded. This is the case we treat in this text, but it is by no means a comprehensive analysis. On the contrary, many situations in mathematical physics most definitely require singular foliations for a proper modeling. The global study of foliations in the spirit of Poincare was begun only in the 1940's, by Ehresmann and Reeb.

Table of Contents

1. Introduction.- 2. Integrable forms.- 3. Foliations.- 4. Flat bundles and holonomy.- 5. Riemannian and totally geodesic foliations.- 6. Second fundamental form and mean curvature.- 7. Codimension one foliations.- 8. Foliations by level hypersurfaces.- 9. Infinitesimal automorphisms and basic forms.- 10. Flows.- 11. Lie foliations.- 12. Twisted duality.- 13. A comparison theorem.- References.- Appendix: Bibliography on foliations.- Index of notations.

Additional information

NLS9780387967073
9780387967073
0387967079
Foliations on Riemannian Manifolds by Philippe Tondeur
New
Paperback
Springer-Verlag New York Inc.
1988-03-28
247
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Foliations on Riemannian Manifolds