Cart
Free US shipping over $10
Proud to be B-Corp

Stochastic Models for Spike Trains of Single Neurons S.K. Srinivasan

Stochastic Models for Spike Trains of Single Neurons By S.K. Srinivasan

Stochastic Models for Spike Trains of Single Neurons by S.K. Srinivasan


$74.19
Condition - New
Out of stock

Summary

1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1 The axon 7 1. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 Model 4. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5.

Stochastic Models for Spike Trains of Single Neurons Summary

Stochastic Models for Spike Trains of Single Neurons by S.K. Srinivasan

1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic deletion model 45 5. 1. 2 Higher-order properties of the sequence of r-events 55 5. 1. 3 Extended version of Model 5. 1 - Model 60 5. 2 5. 2 Models with dependent interaction of excitatory and inhibitory sequences - MOdels 5. 3 and 5.

Table of Contents

1 Some basic neurophysiology.- 1.1 The neuron.- 1.2 Types of neurons.- 2 Signals in the nervous system.- 2.1 Action potentials as point events point processes in the nervous system.- 2.2 Spontaneous activity in neurons.- 3 Stochastic modelling of single neuron spike trains.- 3.1 Characteristics of a neuron spike train.- 3.2 The mathematical neuron.- 4 Superposition models.- 4.1 Superposition of renewal processes.- 4.2 Superposition of stationary point processes limiting behaviour.- 4.3 Superposition models of neuron spike trains.- 4.4 Discussion.- 5 Deletion models.- 5.1 Deletion models with independent interaction of excitatory and inhibitory sequences.- 5.2 Models with dependent interaction of excitatory and inhibitory sequences Models 5.3 and 5.4.- 5.3 Discussion.- 6 Diffusion models.- 6.1 The diffusion equation.- 6.2 Diffusion models for neuron firing sequences.- 6.3 Discussion.- 7 Counter models.- 7.1 Theory of counters.- 7.2 Counter model extensions of deletion models with independent interaction of e-and i-events.- 7.3 Counter model extensions of deletion models with dependent interaction of e-and i-events.- 7.4 Counter models with threshold behaviour 100 7.4.1 Model 7.6.- 7.5 Discussion.- 8 Discrete state models.- 8.1 Birth and death processes.- 8.2 Models with excitatoiy inputs only.- 8.3 Models with independent interaction of e-events and i-events.- 8.4 Models with dependent interaction of input sequaices.- 8.5 Discussion.- 9 Continuous state models.- 9.1 Cumulative processes.- 9.2 Models with only one input sequence.- 9.3 Models with independent interaction of e-and i-events.- 9.4 Models with dependent interaction of e- and i-events.- 9.5 Discussion.- 10 Real neurons and mathematical models.- 10.1 Decay of the membrane potential.- 10.2Hyperpolarisation of the membrane.- 10.3 Refractoriness and threshold.- 10.4 Spatial summation.- 10.5 Other properties of neurons.- 10.6 The neuron as a black box.- 10.7 Spike trains and renewal processes.- 10.8 Conclusion.- References.

Additional information

NPB9783540082576
9783540082576
3540082573
Stochastic Models for Spike Trains of Single Neurons by S.K. Srinivasan
New
Paperback
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
1977-08-01
190
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Stochastic Models for Spike Trains of Single Neurons