Cart
Free US shipping over $10
Proud to be B-Corp

Synthetic Data for Deep Learning Sergey I. Nikolenko

Synthetic Data for Deep Learning By Sergey I. Nikolenko

Synthetic Data for Deep Learning by Sergey I. Nikolenko


$187.89
Condition - New
Only 2 left

Synthetic Data for Deep Learning Summary

Synthetic Data for Deep Learning by Sergey I. Nikolenko

This is the first book on synthetic data for deep learning, and its breadth of coverage may render this book as the default reference on synthetic data for years to come. The book can also serve as an introduction to several other important subfields of machine learning that are seldom touched upon in other books. Machine learning as a discipline would not be possible without the inner workings of optimization at hand. The book includes the necessary sinews of optimization though the crux of the discussion centers on the increasingly popular tool for training deep learning models, namely synthetic data. It is expected that the field of synthetic data will undergo exponential growth in the near future. This book serves as a comprehensive survey of the field.

In the simplest case, synthetic data refers to computer-generated graphics used to train computer vision models. There are many more facets of synthetic data to consider. In the section on basic computer vision, the book discusses fundamental computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., object detection and semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, and simulation environments for robotics. Additionally, it touches upon applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more). It also surveys the work on improving synthetic data development and alternative ways to produce it such as GANs.

The book introduces and reviews several different approaches to synthetic data in various domains of machine learning, most notably the following fields: domain adaptation for making synthetic data more realistic and/or adapting the models to be trained on synthetic data and differential privacy for generating synthetic data with privacy guarantees. This discussion is accompanied by an introduction into generative adversarial networks (GAN) and an introduction to differential privacy.

About Sergey I. Nikolenko

Sergey I. Nikolenko is a computer scientist specializing in machine learning and analysis of algorithms. He is the Head of AI at Synthesis AI, a San Francisco based company specializing on the generation and use of synthetic data for modern machine learning models, and also serves as the Head of the Artificial Intelligence Lab at the Steklov Mathematical Institute at St. Petersburg, Russia. Dr. Nikolenko's interests include synthetic data in machine learning, deep learning models for natural language processing, image manipulation, and computer vision, and algorithms for networking. His previous research includes works on cryptography, theoretical computer science, and algebra.

Table of Contents

1. Introduction.- 2. Synthetic data for basic computer vision problems.- 3. Synthetic simulated environments.- 4. Synthetic data outside computer vision.- 5. Directions in synthetic data development.- 6. Synthetic-to-real domain adaptation and refinement.- 7. Privacy guarantees in synthetic data.- 8. Promising directions for future work.- Conclusion.- References.

Additional information

NPB9783030751777
9783030751777
3030751775
Synthetic Data for Deep Learning by Sergey I. Nikolenko
New
Hardback
Springer Nature Switzerland AG
2021-06-27
348
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Synthetic Data for Deep Learning