Cart
Free US shipping over $10
Proud to be B-Corp

Deep Neural Network Design for Radar Applications Sevgi Zubeyde Gurbuz (Assistant Professor, University of Alabama, USA)

Deep Neural Network Design for Radar Applications By Sevgi Zubeyde Gurbuz (Assistant Professor, University of Alabama, USA)

Deep Neural Network Design for Radar Applications by Sevgi Zubeyde Gurbuz (Assistant Professor, University of Alabama, USA)


$204.09
Condition - New
Only 2 left

Summary

Novel deep learning models are achieving state-of-the-art accuracy in the area of radar target recognition, sometimes exceeding human-level performance. The book provides an introduction to the key aspects of machine learning that any radar engineer seeking to apply deep learning to radar signal processing ought to be aware of.

Deep Neural Network Design for Radar Applications Summary

Deep Neural Network Design for Radar Applications by Sevgi Zubeyde Gurbuz (Assistant Professor, University of Alabama, USA)

Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of.

The book begins with three introductory chapters on radar systems and phenomenology, machine learning principles, and optimization for training common deep neural network (DNN) architectures. Subsequently, the book summarizes radar-specific issues relating to the different domain representations in which radar data may be presented to DNNs and synthetic data generation for training dataset augmentation. Further chapters focus on specific radar applications, which relate to DNN design for micro-Doppler analysis, SAR-based automatic target recognition, radar remote sensing, and emerging fields, such as data fusion and image reconstruction.

Edited by an acknowledged expert, and with contributions from an international team of authors, this book provides a solid introduction to the fundamentals of radar and machine learning, and then goes on to explore a range of technologies, applications and challenges in this developing field. This book is also a valuable resource for both radar engineers seeking to learn more about deep learning, as well as computer scientists who are seeking to explore novel applications of machine learning.

In an era where the applications of RF sensing are multiplying by the day, this book serves as an easily accessible primer on the nuances of deep learning for radar applications.

About Sevgi Zubeyde Gurbuz (Assistant Professor, University of Alabama, USA)

Sevgi Zubeyde Gurbuz is an assistant professor of electrical and computer engineering at the University of Alabama, USA. She received the SPIE Defense and Commercial Sensing Rising Researcher Award in 2020. Her research interests are in radar signal processing and machine learning for applications ranging from human activity and gait analysis for remote health monitoring in biomedical engineering to American Sign Language and gesture recognition for human-computer interaction, and multimodal remote sensing for earth sciences.

Table of Contents

  • Prologue: perspectives on deep learning of RF data
  • Part I: Fundamentals
    • Chapter 1: Radar systems, signals, and phenomenology
    • Chapter 2: Basic principles of machine learning
    • Chapter 3: Theoretical foundations of deep learning
  • Part II: Special topics
    • Chapter 4: Radar data representation for classification of activities of daily living
    • Chapter 5: Challenges in training DNNs for classification of radar micro-Doppler signatures
    • Chapter 6: Machine learning techniques for SAR data augmentation
  • Part III: Applications
    • Chapter 7: Classifying micro-Doppler signatures using deep convolutional neural networks
    • Chapter 8: Deep neural network design for SAR/ISAR-based automatic target recognition
    • Chapter 9: Deep learning for passive synthetic aperture radar imaging
    • Chapter 10: Fusion of deep representations in multistatic radar networks
    • Chapter 11: Application of deep learning to radar remote sensing
  • Epilogue: looking toward the future

Additional information

NPB9781785618529
9781785618529
1785618520
Deep Neural Network Design for Radar Applications by Sevgi Zubeyde Gurbuz (Assistant Professor, University of Alabama, USA)
New
Hardback
Institution of Engineering and Technology
2021-02-04
420
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Deep Neural Network Design for Radar Applications