Cart
Free US shipping over $10
Proud to be B-Corp

Introduction to Applied Linear Algebra Stephen Boyd (Stanford University, California)

Click to look inside

Introduction to Applied Linear Algebra By Stephen Boyd (Stanford University, California)

Introduction to Applied Linear Algebra by Stephen Boyd (Stanford University, California)


$30.99
Condition - Very Good
Only 3 left

Summary

A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

Introduction to Applied Linear Algebra Summary

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares by Stephen Boyd (Stanford University, California)

This groundbreaking textbook combines straightforward explanations with a wealth of practical examples to offer an innovative approach to teaching linear algebra. Requiring no prior knowledge of the subject, it covers the aspects of linear algebra - vectors, matrices, and least squares - that are needed for engineering applications, discussing examples across data science, machine learning and artificial intelligence, signal and image processing, tomography, navigation, control, and finance. The numerous practical exercises throughout allow students to test their understanding and translate their knowledge into solving real-world problems, with lecture slides, additional computational exercises in Julia and MATLAB, and data sets accompanying the book online. Suitable for both one-semester and one-quarter courses, as well as self-study, this self-contained text provides beginning students with the foundation they need to progress to more advanced study.

Introduction to Applied Linear Algebra Reviews

'Introduction to Applied Linear Algebra fills a very important role that has been sorely missed so far in the plethora of other textbooks on the topic, which are filled with discussions of nullspaces, rank, complex eigenvalues and other concepts, and by way of 'examples', typically show toy problems. In contrast, this unique book focuses on two concepts only,linear independence and QR factorization, and insteadinsists on the crucial activity of modeling, showing via many well-thought out practical examples how a deceptively simple method such as least-squares is really empowering. A must-read introduction for any student in data science, and beyond!' Laurent El Ghaoui, University of California, Berkeley
'This book explains the least squares method and the linear algebra it depends on - and the authors do it right!' Gilbert Strang, Massachusetts Institute of Technology
'The kings of convex optimization have crossed the quad and produced a wonderful fresh look at linear models for data science. While for statisticians the notation is a bit quirky at times, the treatise is fresh with great examples from many fields, new ideas such as random featurization, and variationson classical approaches in statistics. With tons of exercises, this book is bound to be popular in the classroom.' Trevor Hastie, Stanford University, California
'Boyd and Vandenberghe present complex ideas with a beautiful simplicity, but beware! These are very powerful techniques! And so easy to use that your students and colleagues may abandon older methods. Caveat lector!' Robert Proctor, Stanford University, California
' this book could be used either as the textbook for a first course in applied linear algebra for data science or (using the first half of the book to review linear algebra basics) the textbook for a course in linear algebra for data science that builds on a prior to introduction to linear algebra This is a very well written textbook that features significant mathematics, algorithms, and applications. I recommend it highly.' Brian Borchers, MAA Reviews

About Stephen Boyd (Stanford University, California)

Stephen Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering at Stanford University,California, with courtesy appointments in the Department of Computer Science, and the Department of Management Science and Engineering. He is the co-author of Convex Optimization (Cambridge, 2004), written with Lieven Vandenberghe. Lieven Vandenberghe is a Professor in the Electrical and Computer Engineering Department at the University of California, Los Angeles, with a joint appointment in the Department of Mathematics. He is the co-author, with Stephen Boyd, of Convex Optimization (Cambridge, 2004).

Table of Contents

Part I. Vectors: 1. Vectors; 2. Linear functions; 3. Norm and distance; 4. Clustering; 5. Linear independence; Part II. Matrices: 6. Matrices; 7. Matrix examples; 8. Linear equations; 9. Linear dynamical systems; 10. Matrix multiplication; 11. Matrix inverses; Part III. Least Squares: 12. Least squares; 13. Least squares data fitting; 14. Least squares classification; 15. Multi-objective least squares; 16. Constrained least squares; 17. Constrained least squares applications; 18. Nonlinear least squares; 19. Constrained nonlinear least squares; Appendix A; Appendix B; Appendix C; Appendix D; Index.

Additional information

GOR009841561
9781316518960
1316518965
Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares by Stephen Boyd (Stanford University, California)
Used - Very Good
Hardback
Cambridge University Press
2018-06-07
474
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a used book - there is no escaping the fact it has been read by someone else and it will show signs of wear and previous use. Overall we expect it to be in very good condition, but if you are not entirely satisfied please get in touch with us

Customer Reviews - Introduction to Applied Linear Algebra